Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that you are going to program a computer to carry out an iterative calculation of motion involving electric forces. Assume that as usual we use the final velocity in each time interval as the approximate average velocity during that interval. Which of the following calculations should be done before starting the repetitive calculation loop? Which of the calculations listed above should go inside the repetitive loop, and in what order?

(a) Define constants such as 14πε0

(b) Update the (vector) position of each object.

(c) Calculate the (vector) forces acting on the objects.

(d) Specify the initial (vector) momentum of each object.

(e) Specify an appropriate value for the time step.

(f) Specify the mass of each object.

(g) Update the (vector) momentum of each object.

(h) Specify the initial (vector) position of each object.

Short Answer

Expert verified

Inside of the loop b,c,g

Outside of the loop is a,e,f,h,d.

Step by step solution

01

Momentum of an object

The formula for the momentum of an object is

P=mv

Where, Pis the momentum of an object, mthe mass of an object, vis the speed of the object.

02

Inside the loop

For a computer program to carry out an iterative calculation of motion involving electric forces. The following order for the inside the loop for calculation of motion.

  1. Update the position of each object.
  2. Calculate the forces acting on the objects.
  3. Update the momentum of each object.
03

Outside the loop

The following order for outside the loop for calculation of motion.

Define constants

  1. Specify an appropriate value for the time step.
  2. Specify the mass of each object.
  3. Specify the initial position of each object.
  4. Specify the initial momentum of each object

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When they are far apart, the momentum of a proton is (3.4×10-21,0,0)kg.m/sas it approaches another proton that is initially at rest. The two protons repel each other electrically, without coming close enough to touch. When they are once again far apart, one of the protons now has momentum(2.4×10-21,1.55×10-21,0)kg.m/s. At that instant, what is the momentum of the other proton?

In outer space a small rock with mass 5kg traveling with velocity(0,1800,0)ms strikes a stationary large rock head-on and bounces straight back with velocity role="math" localid="1658131357647" (0,-1500,0)ms. After the collision, what is the vector momentum of the large rock?

Use data from the inside back cover to calculate the gravitational and electric forces two electrons exert on each other when they are1×10-10mapart (about one atomic radius). Which interactions between two electrons is stronger, the gravitational attraction or the electric repulsion? If the two electrons are at rest, will they begin to move toward each other or away from each other? Note that since both the gravitational and the electric forces depend on the inverse square distance, this comparison holds true at all distances, not just at a distance of1×10-10m.

Two thin hollow plastic spheres, about the size of a ping-pong ball with masses (), have been rubbed with wool. Sphere 1 has a charge ofand is at location. Sphere 2 has a charge ofand is atlocation. It will be useful to draw a diagram of the situation, including the relevant vectors.

a) What is the relative position vectorpointing fromto? b) What is the distance betweenand? c) What is the unit vectorin the direction of? d) What is the magnitude of the gravitational force exerted onby? e) What is the (vector) gravitational force exerted onby? f) What is the magnitude of the electric force exerted onby? g) What is the (vector) electric force exerted onby? h) What is the ratio of the magnitude of the electric force to the magnitude of the gravitational force? i) if the two masses were four times further away (that is, if the distance between the masses were), what would be the ratio of the magnitude of the electric force to the magnitude of the gravitational force now?

Two rocks are tied together with a string of negligible mass and thrown into the air. At a particular instant, rock 1, which has a mass of , is headed straight up with a speed of , and rock 2, which has a mass of, is moving parallel to the ground, in the +x direction, with a speed of . a) What is the total momentum of the system consisting of both rocks and the string? b) What is the velocity of the center of mass of the system?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free