Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A proton is located at , and an alpha particle (consisting of two protons and two neutrons)is located at . a) Calculate the force the proton exerts on the alpha particle. b) Calculate the force the alpha particle exerts on the proton?

Short Answer

Expert verified

a) The force the proton exerts on the alpha particle is and b) the force the alpha particle exerts on the proton is

Step by step solution

01

Identification of the given data 

The given data can be listed below as:

  • The location of the proton is

  • The location of the alpha particle is

02

Significance of the Coulomb’s law on the force on the proton and alpha particle

This law states that the unlike charges attracts and the like charges also repel each other. The electrostatic force is directly proportional to the product of the charges and inversely proportional to the square of their distances.

The equation of the electrostatic force gives the force exerted by the proton and also the alpha particle.

03

Determination of the force exerted by the alpha particle and the proton

The location of the protoncan be expressed as:

The location of the electron can be expressed as:

Hence, the position vector can be expressed as:

The distance of the particle is expressed as:

a) From the coulomb’s law, the force exerted by the proton on the alpha particle is expressed as:

Here, F is the force exerted by the proton, is the charges of the proton and the alpha particle which are respectively, k is the coulomb’s constant that is and r is the distance amongst the particles that is

Substituting the values in the above equation, we get-

Thus, the force the proton exerts on the alpha particle is

b) From the coulomb’s law, the force exerted by the alpha particle on the proton is expressed as:

Here, F is the force exerted by the proton, is the charges of the proton and the alpha particle which are respectively , k is the coulomb’s constant that is and r is the distance amongst the particles that is

Substituting the values in the above equation, we get-

Thus, the force the alpha particle exerts on the proton is

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that you are going to program a computer to carry out an iterative calculation of motion involving electric forces. Assume that as usual we use the final velocity in each time interval as the approximate average velocity during that interval. Which of the following calculations should be done before starting the repetitive calculation loop? Which of the calculations listed above should go inside the repetitive loop, and in what order?

(a) Define constants such as 14πε0

(b) Update the (vector) position of each object.

(c) Calculate the (vector) forces acting on the objects.

(d) Specify the initial (vector) momentum of each object.

(e) Specify an appropriate value for the time step.

(f) Specify the mass of each object.

(g) Update the (vector) momentum of each object.

(h) Specify the initial (vector) position of each object.

A car of mass2045kgmoving in the x direction at a speed of29m/sstrikes a hovering mosquito of mass2.5mg, and the mosquito is smashed against the windshield. The interaction between the mosquito and the windshield is an electric interaction between the electrons and protons in the mosquito and those in the windshield. (a) What is the approximate momentum change of the mosquito? Give magnitude and direction. Explain any approximations you make. (b) At a particular instant during the impact, when the force exerted on the mosquito by the car is F, what is the magnitude of the force exerted on the car by the mosquito? (c) What is the approximate momentum change of the car? Give magnitude and direction. Explain any approximations you make. (d) Qualitatively, why is the collision so much more damaging to the mosquito than to the car?

A bowling ball is initially at rest. A Ping-Pong ball moving in the +z direction hits the bowling ball and bounces off it, traveling back in the –z direction. Consider a time interval t extending from slightly before to slightly after the collision. (a) In this time interval, what is the sign of Pz for the system consisting of both balls? (b) In this time interval, what is the sign of Pz for the system consisting of the bowling ball alone?

A star of mass 7×1030kg is located at <5×1012,2×1012,0>m.A planet of mass 3×1024kg and is located at <3×1012,4×1012,0>m and is moving with a velocity of <0.3×104,1.5×104,0>m/s (a) At a time 1×106s later what is the new velocity of the planet? (b) Where is the planet at this later time? (c) Explain briefly why the procedures you followed in parts (a) and (b) were able to produce usable results but wouldn’t work if the later time had been 1×109s instead of 1×106s after the initial time. Explain briefly how you could use a computer to get around this difficulty.

The mass of the Sun is 2×1030kg. The mass of the Earth is 6×1024kg.and their center-to-center distance is 1.5×1011m. Suppose that at some instant the Sun's momentum is zero (it's at rest). Ignoring all effects but that of the Earth, what will the Sun's speed be after one day? (Very small changes in the velocity of a star can be detected using the "Doppler" effect, a change in the frequency of the starlight, which has made it possible to identify the presence of planets in orbit around a star.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free