Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 3.60 shows two positively charged objects (with the same charge) and one negatively charged object. What is the direction of the net electric force on the negatively charged object? If the net force is zero, state this explicitly.

Short Answer

Expert verified

Thedirection of the total forcewill be in the negative x-direction.

Step by step solution

01

Identification of given data

There are two positively charged objects and one negatively charged object.

02

Concept of attractive and repulsive force

According to Coulomb’s law, two charged particle systems will exert an attractive or repulsive force towards each other if particles of the different or the same type of charges are there.

03

Determination of net electric force

The forces between the like charges (positive or negative) are repulsive, while for the dissimilar charges it is attractive.

From the above figure, one can see that the negative charge is equidistant from both the positive charges and exerts the forces\({\vec F_1}\;and\;{\vec F_2}\)due to the first and second charges. They are of equal magnitude due to the same amount of positive charge.

If we take the x and y components of\({\vec F_1}\;and\;{\vec F_2}\), then It is clear from the figure that the y-components will cancel out while the x-components (which are negative) will add up.

Therefore, the direction of the total force will be in the negative x-direction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At a particular instant a proton exerts an electric force of on an electron. How far apart are the proton and the electron?

Masses M and m attract each other with a gravitational force of magnitude F. Mass m is replaced with a mass 3 cm, and it is moved four times farther away. Now, what is the magnitude of the force?

A star exerts a gravitational force of magnitude -4×1025Non a planet.

(a) What is the magnitude of the gravitational force that the planet exerts on the star?

(b) If the mass of the planet were twice as large, what would be the magnitude of the gravitational force on the planet?

(c)If the distance between the star and planet (with their original masses) were three times larger, what would be the magnitude of this force?

Two thin hollow plastic spheres, about the size of a ping-pong ball with masses (), have been rubbed with wool. Sphere 1 has a charge ofand is at location. Sphere 2 has a charge ofand is atlocation. It will be useful to draw a diagram of the situation, including the relevant vectors.

a) What is the relative position vectorpointing fromto? b) What is the distance betweenand? c) What is the unit vectorin the direction of? d) What is the magnitude of the gravitational force exerted onby? e) What is the (vector) gravitational force exerted onby? f) What is the magnitude of the electric force exerted onby? g) What is the (vector) electric force exerted onby? h) What is the ratio of the magnitude of the electric force to the magnitude of the gravitational force? i) if the two masses were four times further away (that is, if the distance between the masses were), what would be the ratio of the magnitude of the electric force to the magnitude of the gravitational force now?

A bowling ball is initially at rest. A Ping-Pong ball moving in the +z direction hits the bowling ball and bounces off it, traveling back in the –z direction. Consider a time interval t extending from slightly before to slightly after the collision. (a) In this time interval, what is the sign of Pz for the system consisting of both balls? (b) In this time interval, what is the sign of Pz for the system consisting of the bowling ball alone?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free