Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the approximate gravitational force exerted by the Earth on a human standing on the Earth's surface. Compare with the approximate gravitational force of a human on another human at a distance of 3 m. What approximations or simplifying assumptions must you make?

Short Answer

Expert verified

The value of approximate gravitational force isF=3.11×1015N

Step by step solution

01

Identification of given data

Distance of human = 3 m

02

Gravitational force

Gravitational force is the attraction of all the masses in the universe.

03

Calculation of the gravitational force

According to the Newton’s low of gravitation

F=Gm1m2r2

Where

G – Gravitational constant 6.67×10-11m3kg.s

role="math" localid="1653973046667" m1- - Mass of 1 object

m2-Mass of 2 objects

role="math" localid="1653973083756" r- Distance between two object = 3m

Let us assume that mass of object one is m1=70kg

And second mass is as mass of earth m2=6×1024kg

So after putting the values we get

F=Gm1m2r2F=6.67×10-11m3kg.s2×70kg×6×1024kg32F=3.11×1015N

Thus the value of gravitational force is F=3.11×1015N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 3.60 shows two positively charged objects (with the same charge) and one negatively charged object. What is the direction of the net electric force on the negatively charged object? If the net force is zero, state this explicitly.

A bullet traveling horizontally at a very high speed embeds itself in a wooden block that is sitting at rest on a very slippery sheet of ice. You want to find the speed of the block just after the bullet embeds itself in the block. (a) What should you choose as the system to analyze? (b) Which of the following statements is true? (1) After the collision, the speed of the block with the bullet stuck in it is the same as the speed of the bullet before the collision. (2) The momentum of the block with the bullet stuck in it is the same as the momentum of the bullet before the collision. (3) The initial momentum of the bullet is greater than the momentum of the block with the bullet stuck in it.

A car of masscollides with a truck of mass2800kg, and just after the collision the car and truck slide along, stuck together. The car’s velocity just before the collision was(40,0,0)m/s, and the truck’s velocity just before the collision was(-14,0,29)m/s. (a) What is the velocity of the stuck-together car and truck just after the collision? (b) In your analysis in part (a), why can you neglect the effect of the force of the road on the car and truck?

A star of mass 7×1030kg is located at <5×1012,2×1012,0>m.A planet of mass 3×1024kg and is located at <3×1012,4×1012,0>m and is moving with a velocity of <0.3×104,1.5×104,0>m/s (a) At a time 1×106s later what is the new velocity of the planet? (b) Where is the planet at this later time? (c) Explain briefly why the procedures you followed in parts (a) and (b) were able to produce usable results but wouldn’t work if the later time had been 1×109s instead of 1×106s after the initial time. Explain briefly how you could use a computer to get around this difficulty.

In outer space a small rock with mass 5kg traveling with velocity(0,1800,0)ms strikes a stationary large rock head-on and bounces straight back with velocity role="math" localid="1658131357647" (0,-1500,0)ms. After the collision, what is the vector momentum of the large rock?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free