Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Masses M and m attract each other with a gravitational force of magnitude F. Mass m is replaced with a mass 3 cm, and it is moved four times farther away. Now, what is the magnitude of the force?

Short Answer

Expert verified

The magnititude of the force isF=1.25×10-11×mMd2N.

Step by step solution

01

identification of the given data

- Massm=3m

-d'=4d

02

Gravitational Force

Bodies that have mass and are at a certain distance attract each other. This attraction is the gravitational force.

03

Calculation of the force magnitude

By Newton's law, the magnitude of the force is written as:

F=Gm1×m2d2

Here, F- Magnitude of gravitational force,m1- the mass of object 1,m2- the mass of object 2, d- Distance separating two objects, and G- Universal gravitation constant 6.67×10-11N·m2/kg2

F=Gm1×m2d'2

F=6.67×10-11M×3m(4d)2

F=1.25×10-11×mMd2N

Thus, the value of force isF=1.25×10-11×mMd2N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A proton is located at (0,0,-2×10-9)m, and an alpha particle (consisting of two protons and two neutrons)is located at(1.5×10-9,0,2×10-9)m. a) Calculate the force the proton exerts on the alpha particle. b) Calculate the force the alpha particle exerts on the proton?

At t=0 a star of mass 4×1030kg has the velocity <7×104,6×104,-8×104>m/s and is located at <2.00×1012,-5.00×1012,4.00×1012>m relative to the center of a cluster of stars. There is only one nearby star that exerts a significant force on the first star. The mass of the second star is 3×1030kg, its velocity is <2×104,-1×104,9×104>m/s, and this second star is located at <2.03×1012,-4.94×1012,3.95×1012> relative to the center of the cluster of stars (a) At t=1×105s, what is the approximate momentum of the first star? (b) Discuss briefly some ways in which your result for (a) is approximate, not exact. (c) At t=1×105s, what is the approximate position of the first star? (d) Discuss briefly some ways in which your result for (b) is approximate, not exact.

One kind of radioactivity is called "alpha decay." For example, the nucleus of a radium-220 atom can spontaneously split into a radon-216 nucleus plus an alpha particle (a helium nucleus containing two protons and two neutrons). Consider a radium-220 nucleus that is initially at rest. It spontaneously decays, and the alpha particle travels off in the +z direction. What can you conclude about the motion of the new radon-216 nucleus? Be as precise as you can, and explain your reasoning.

In outer space two rocks collide and stick together. Here are the masses and initial velocities of two rocks:

Rock 1: mass = 15 kg, initial velocity =10,-30,0 m/s

Rock 2: mass = 32 kg, initial velocity = 15,12,0m/s

What is the velocity of the stuck together rocks after colliding?

A proton and an electron are separated by 1×10-10m the radius of a typical atom. Calculate the magnitude of the electric force that the proton exerts on the electron and the magnitude of the electric force that the electron exerts on the proton.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free