Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain briefly why there is a limit to how much charge can be placed on a metal sphere in the classroom. If the radius of the sphere is 15cm what is the maximum amount of charge you can place on the sphere? (Remember that a uniform sphere of charge makes an electric field outside the sphere as though all the charge were concentrated at the center of the sphere.)

Short Answer

Expert verified

The maximum amount of charge you can place on the sphere is7.5×10-6C

Step by step solution

01

Identification of given data

Radius of sphere is r=15cmor0.15m

02

Significance of electric field

The electric force per unit charge is referred to as the electric field. It is assumed that the field's direction corresponds to the force it would apply to a positive test charge. From a positive point charge, the electric field radiates outward, and from a negative point charge, it radiates in.

E=14πε0qr2 ...(i)

Where, ε0is permittivity of the free space ( 8.85×10-12C2/Nm2)

qis the maximum amount of charge that you can place on the sphere

03

Determining the maximum amount of charge you can place on the sphere

Using equation (i)

E=14πε0qr2q=E(4πε0r2)

Electric field required to cause a spark in air at STP isE=3×106V/m

Substitute all the values in above equation,

q=3×106V/m×4×π×8.85×10-12C2/Nm×0.15m2=7.5×10-6C

Hence the maximum amount of charge you can place on the sphere islocalid="1662209970981" 7.5×10-6C

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the mobile electron density for nickel. A mole of nickel has a mass of 59g (0.059kg), and one mobile electron is released by each atom in metallic nickel. The density of nickel is about 8.8g/cm3, or8.8×103kg/m3

A long solenoid with diameter 4 cm is in a vacuum, and a lithium nucleus ( 4 neutrons and 3 protons ) is in a clockwise circular orbit inside the solenoid ( Figure 20.102 ). It takes 50ns50×10-9s for the lithium nucleus to complete one orbit.

(a.) Does the current in the solenoid run clockwise or counter clockwise ? Explain including physics diagrams.

In Figure 20.115 two long straight wires carrying a large conventional current I are connected by one-and-a-quarter turns of wire of radius R. An electron is moving to the right with speed v at the instant that it passes through the center of the arc. You apply an electric field Eat the center of the arc in such a way that the net force on the electron at this instant is zero. (You can neglect the gravitational force on the electron, which is easily shown to be negligible, and the magnetic field of the coil is much larger than the magnetic field of the Earth.)

Determine the direction and magnitude of the electric field . Be sure to explain your work fully; draw and label any vectors you use.

A copper wire with square cross section carries a conventional current I to the left (as in Figure 20.83). There is a magnetic field B perpendicular to the wire. Describe the direction of E, the transverse electric field inside the wire due to the Hall effect, and explain briefly.

We will consider the possibility that a free electron acted on by an electric field could gain enough energy to ionize an air molecule in a collision. (a) Consider an electron that starts from rest in a region where there is an electric field (due to some charged objects nearby) whose magnitude is nearly constant. If the electron travels a distance dand the magnitude of the electric field is E ,what isthe potential difference through which the electron travels? (Pay attention to signs: Is the electron traveling with the electric field or opposite to the electric field?) (b) What is the change in potential energy of the system in this process? (c) What is the change in the kinetic energy of the electron in this process? (d) We found the mean free path of an electron in air to be about role="math" localid="1662205184726" 5×10-7m, and in the previous question you calculated the energy required to knock an electron out of an atom. What is the magnitude of the electric field that would be required in order for an electron to gain sufficient kinetic energy to ionize a nitrogen molecule? (e) The electric field required to cause a spark in air is observed to be about 3×106V/mat STP. What is the ratio of the magnitude of the field you calculated in the previous part to the observed value at STP? (f) What is it reasonable to conclude about this model of how air becomes ionized? (1) Since we used accurate numbers, this is a huge discrepancy, and the model is wrong. (2) Considering the approximations we made, this is pretty good agreement, and the model may be correct.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free