Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20


In Figure 20.128 on the left is a region of uniform magnetic field B1into the page, and adjacent on the right is a region of uniform magnetic field B2 also into the page. The magnetic field B2is smaller than B1(B2<B1) . You pull a rectangular loop of wire of length w, height h, and resistance R from the first region into the second region, on a frictionless surface. While you do this you apply a constant force F to the right, and you notice that the loop doesn’t accelerate but moves with a constant speed.

Calculate this constant speed v in terms of the known quantities B1, B2, w, h, R and F , and explain your calculation carefully. Also show the approximate surface-charge distribution on the loop.

Short Answer

Expert verified

v=FRh2B1B22

Step by step solution

01

Given Data

magnetic field in the left region=B1magnetic field in the right region=B2Force=FResistance=R

02

Concept

Magnetic field is expressed as a field where a magnetic material is charged by the force of magnetism acts.

03

Calculate the constant speed

Apply Faraday’s law,

ξ=dϕdf=B1dAB1dt+B2dAB2dt=B1hv+B2hvξ=hvB1B2I=ξR=hvB1B2R

Force on wire,

F1=B1I1h=hvB1B2B1hRF1=h2vB1B2B1RF2=h2vB1B2B2R

Total Force

=F1F2F=h2vB1B2B1Rh2vB1B2B2RF=h2vB1B22Rv=FRh2B1B22

Hence, constant speed is

v=FRh2B1B22

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

:In Figure 20.121 a bar 11 cm long with a rectangular cross section 3 cm high and 2 cm deep is connected to a 1.2 V battery and an ammeter. The resistance of the copper connecting wires and the ammeter, and the internal resistance of the battery, are all negligible compared to the resistance of the bar.

Using large coils not shown on the diagram, a uniform magnetic field of 1.8 T was applied perpendicular to the bar (out of the page, as shown). A voltmeter was connected across the bar, with the connections across the bar carefully placed directly across from each other.

The mobile charges in the bar have charge +e, their density is 7×1023/m3, and their mobility is 3×105(m/s)/(V/m).

Predict the readings of the voltmeter and ammeter, including signs. Explain carefully, using diagrams to support your explanation. Remember that a voltmeter reads positive if the + terminal is connected to higher potential, and that an ammeter reads positive if conventional current enters the + terminal.

A neutral iron bar is dragged to the left at speed v through a region with a magnetic field B points out of the page (Figure 20.122). Which diagram (1-5) best shows the state of the bar?

In Figure 20.115 two long straight wires carrying a large conventional current I are connected by one-and-a-quarter turns of wire of radius R. An electron is moving to the right with speed v at the instant that it passes through the center of the arc. You apply an electric field Eat the center of the arc in such a way that the net force on the electron at this instant is zero. (You can neglect the gravitational force on the electron, which is easily shown to be negligible, and the magnetic field of the coil is much larger than the magnetic field of the Earth.)

Determine the direction and magnitude of the electric field . Be sure to explain your work fully; draw and label any vectors you use.

We will consider the possibility that a free electron actedon by an electric field could gain enough energy to ionize anair molecule in a collision. (a) Consider an electron that startsfrom rest in a region where there is an electric field (due to somecharged objects nearby) whose magnitude is nearly constant. Ifthe electron travels a distance dand the magnitude of the electric field is E,what isthe potential difference through which the electron travels? (Pay attention to signs: Is the electron traveling with the electric field or opposite to the electric field?) (b) What is the change in potential energy of the system in this process? (c) What is the change in the kinetic energy of the electron in this process? (d) We found the mean free path of an electron in air to be about 5×10-7m, and in the previous question you calculated the energy required to knock an electron out of an atom. What is the magnitude of the electric field that would be required in order for an electron to gain sufficient kinetic energy to ionize a nitrogen molecule? (e) The electric field required to cause a spark in air is observed to be about 3×106V/m at STP. What is the ratio of the magnitude of the field you calculated in the previous part to the observed value at STP? (f) What is it reasonable to conclude about this model of how air becomes ionized? (1) Since we used accurate numbers, this is a huge discrepancy, and the model is wrong. (2) Considering the approximations we made, this is pretty good agreement, and the model may be correct.

We will consider the possibility that a free electron acted on by an electric field could gain enough energy to ionize an air molecule in a collision. (a) Consider an electron that starts from rest in a region where there is an electric field (due to some charged objects nearby) whose magnitude is nearly constant. If the electron travels a distance dand the magnitude of the electric field is E,what isthe potential difference through which the electron travels? (Pay attention to signs: Is the electron traveling with the electric field or opposite to the electric field?) (b) What is the change in potential energy of the system in this process? (c) What is the change in the kinetic energy of the electron in this process? (d) We found the mean free path of an electron in air to be about 5×10-7m, and in the previous question you calculated the energy required to knock an electron out of an atom. What is the magnitude of the electric field that would be required in order for an electron to gain sufficient kinetic energy to ionize a nitrogen molecule? (e) The electric field required to cause a spark in air is observed to be about 3×106V/mat STP. What is the ratio of the magnitude of the field you calculated in the previous part to the observed value at STP? (f) What is it reasonable to conclude about this model of how air becomes ionized? (1) Since we used accurate numbers, this is a huge discrepancy, and the model is wrong. (2) Considering the approximations we made, this is pretty good agreement, and the model may be correct.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free