Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the mobile electron density for nickel. A mole of nickel has a mass of 59g (0.059kg), and one mobile electron is released by each atom in metallic nickel. The density of nickel is about 8.8g/cm3, or8.8×103kg/m3

Short Answer

Expert verified

The mobile electron density is, 8.98×1028kg/m3.

Step by step solution

01

Identification of the given data 

The given data can be listed below as,

· The mass of one mole of nickel is, 59g or 0.059 kg.

· The density of nickel is, ρ=8.8g/cm3orrole="math" localid="1668551564749" ρ=8.8×103kg/m3

02

Significance of the Avogadro’s number

The quantity of particles in one mole of a substance is known as Avogadro's number. It can be used to change moles into particles or particles into particles.

03

Determination of the mobile electron density for nickel

According to the question,

1 mole of nickel = Avogadro atoms = 0.059kg

1m3of nickel = ρkg

ρkg=ρ0.059moles=Avogadro×ρ0.059atoms

The mobile electron density is expressed as,

=ρ0.059moles=Avagadro×ρ0.059atoms

Substitute all the value in the above equation

The mobile electron density is,

=6.023×1023×8.8×103kg/m30.059=8.98×1028kg/m3

Hence the mobile electron density is,8.98×1028kg/m3

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The center of a bar magnet whose magnetic dipole moment is 8,0,0 Am2is located at the origin. A second bar magnet whose magnetic dipole moment is 3,0,0 Am2is located at x=0.12 m. What is the vector force on the second magnet due to the first magnet?

A long solenoid with diameter 4 cm is in a vacuum, and a lithium nucleus ( 4 neutrons and 3 protons ) is in a clockwise circular orbit inside the solenoid ( Figure 20.102 ). It takes \({\bf{50ns}}\,\left( {{\bf{50 \times 1}}{{\bf{0}}^{{\bf{ - 9}}}}{\bf{s}}} \right)\) for the lithium nucleus to complete one orbit.

  1. Does the current in the solenoid run clockwise or counter clockwise ? Explain including physics diagrams.


In Figure 20.128 on the left is a region of uniform magnetic field B1into the page, and adjacent on the right is a region of uniform magnetic field B2 also into the page. The magnetic field B2is smaller than B1(B2<B1) . You pull a rectangular loop of wire of length w, height h, and resistance R from the first region into the second region, on a frictionless surface. While you do this you apply a constant force F to the right, and you notice that the loop doesn’t accelerate but moves with a constant speed.

Calculate this constant speed v in terms of the known quantities B1, B2, w, h, R and F , and explain your calculation carefully. Also show the approximate surface-charge distribution on the loop.

A current carrying wire is oriented along the y axis. It passes through a region 0.6m in which there is a magnetic field of 4.5T in the+z direction. The wire experiences a force of 14.9N in the -x direction.

(a.) What is the magnitude of the conventional current in the wire?

A neutral copper bar oriented horizontally moves upward through a region where there is a magnetic field out of the page. Which diagram (1-5) in Figure 20.123 correctly shows the distribution of charge on the bar?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free