Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You lift a heavy box. We’ll consider this process for different choices of system and surroundings. (a) Choose the box as the system of interest. What objects in the surroundings exert significant forces on this system? (b) Choose you and the box as the system of interest. What objects in the surroundings exert significant forces on this system? (c) Choose you, the box, and the Earth as the system of interest. What objects in the surroundings exert significant forces on this system?

Short Answer

Expert verified
  1. The objects from the surrounding that exerts force on the system are the individual and the Earth.
  2. The objectsfrom the surrounding that exerts force on the system arethe floor and the Earth.
  3. Nothing will exert force on the system (box, the individual, and the Earth).

Step by step solution

01

Explanation of the system and surrounding

The things that are not included in the system are defined as the surroundings and the part that is selected for the consideration is defined the system.

02

Indication of the objects from the surrounding that exerts force on the system when box is considered as system

The objects from the surrounding that exerts force on the system are as follows,

The individual and the Earth

The body of the individual exerts the normal reaction force on the box and the Earth exerts the force due to gravity which is also called weight of the object and it is given by,

W=mg

Here, m is the mass of the object and g is the acceleration due to gravity.

Thus, the objects from the surrounding that exerts force on the system are the individual and the Earth.

03

Indication of the objects from the surrounding that exerts force on the system when box and the individual is considered as system

The objects from the surrounding that exerts force on the system are as follows,

The floor and the Earth

The floor on which the individual is standing exerts the normal reaction force and the Earth exerts the force due to gravity which is also called weight of the object and it is given by,

W=mg

Thus, the objects from the surrounding that exerts force on the system are the floor and the Earth.

04

Indication of the objects from the surrounding that exerts force on the system when box, the individual, and the Earth is considered as system

The objects from the surrounding that exerts force on the system are as follows,

None of the objects from the surrounding will exerts force on the system that includes box, the individual, and the Earth.

Thus, nothing will exert force on the system (box, the individual, and the Earth.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A block of mass m is projected straight upward by a strong spring whose stiffness isks . When the block is a height y1above the floor, it is travelling upward at speedv1 , and the spring is compressed an amount s1. A short time later the block is at height y2, travelling upward at speed v2, and the spring is compressed an amount s2. Assume that thermal transfer of energy (microscopic work) Q between the block and the air is negligible. For each of the following choices of system, write the Energy Principle in the update formEf=Ei+W . (a) The block, the spring and the Earth; (b) the block plus spring; (c) the block alone.

Question: In the Niagara Falls hydroelectric generating plant, the energy of falling water is converted into electricity. The height of the falls is about 50m. Assuming that the energy conversion is highly efficient, approximately how much energy is obtained from one kilogram of falling water? Therefore, approximately how many kilograms of water must go through the generators every second to produce a megawatt of power 1 X 106W?

Design a “bungee jump” apparatus for adults. A bungee jumper falls from a high platform with two elastic cords tied to the ankles. The jumper falls freely for a while, with the cords slack. Then the jumper falls an additional distance with the cords increasingly tense. You have cords that are 10 mlong, and these cords stretch in the jump an additional 24 mfor a jumper whose mass is 80 kg, the heaviest adult you will allow to use your bungee jump (heavier customers would hit the ground). You can neglect air resistance. (a) Make a series of five simple diagrams, like a comic strip, showing the platform, the jumper, and the two cords at various times in the fall and the rebound. On each diagram, draw and label vectors representing the forces acting on the jumper, and the jumper’s velocity. Make the relative lengths of the vectors reflect their relative magnitudes. (b) At what instant is there the greatest tension in the cords? How do you know? (c) What is the jumper’s speed at this instant? (d) Is the jumper’s momentum changing at this instant or not? (That is, isdp-/dtnonzero or zero?) Explain briefly. (e) Focus on this instant, and use the principles of this chapter to determine the spring stiffnessksfor each cord. Explain your analysis. (f) What is the maximum tension that each cord must support without breaking? (g) What is the maximum acceleration (in’s) that the jumper experiences? What is the direction of this maximum acceleration? (h) State clearly what approximations and estimates you have made in your design.

A horizontal spring—mass system has low friction, spring stiffness 200N/mand mass0.4kg. The system is released with an initial compression of the spring of10cm and an initial speed of the mass of3m/s.

(a) What is the maximum stretch during the motion?

(b) What is the maximum speed during the motion?

(c) Now suppose that there is energy dissipation of 0.01 J per cycle of the spring—mass system. What is the average power input in watts required to maintain a steady oscillation?

Question: A spring whose stiffness is 800N/m has a relaxed length of 0.66m. If the length of the spring changes from 0.55m to 0.96m. What is the change in potential energy of the spring?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free