Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An oil company included in its advertising the following phrase: "Energy - not just a force, its power!" In technical usage, what are the differences among the terms energy, force, and power?

Short Answer

Expert verified

Examining the units of each quantity is an easy technique to find the differences.

Step by step solution

01

Definition of energy

Energy is the quantity that must be delivered to a body or physical system in order to perform work on it or heat it.

It can take many forms, including potential, kinetic, thermal, electrical, chemical, radioactive, and others.

02

Finding the differences among the terms

Here are a few definitions of these terms (or quantities) that can assist us in determining their differences.

Force: the push or pull experienced by an object when an external force acts on it is known as force. It is expressed in terms of Newton.

This concept of force is explained by Newton’s first law of motion which states that if a body is at rest it will remain at rest, if a body is in motion it will remain in motion unless it is compelled by any external force.

Energy:Energy is defined as the capacity of doing a work. It is expressed in joules [J]

Power:Power is defined as the amount of energy which is consumed when work is done in per unit time, power is measured in watts W

Therefore, the units of each quantity are an easy technique to find the differences.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You drop a single coffee filter of mass 1.7 g from a very tall building, and it takes 52 s to reach the ground. In a small fraction of that time the coffee filter reached terminal speed. (a) What was the upward force of the air resistance while the coffee filter was falling at terminal speed? (b) Next you drop a stack of five of these coffee filters. What was the upward force of the air resistance while this stack of coffee filters was falling at terminal speed? (c) Again assuming that the stack reaches terminal speed very quickly, about how long will the stack of coffee filters take to hit the ground?

A coffee filter of mass 1.8kgdropped from a height of 4mreaches the ground with a speed of 0.8m/s. How much kinetic energyKairdid the air molecules gain from the falling coffee filter? Start from the Energy principle, and choose as the system the coffee filter, the Earth and the air.

180 g of boiling water (temperature 1000C, heat capacity 4.2 J/K/g) are poured into an aluminum pan whose mass is 1050 g and initial temperature 260C(the heat capacity of aluminum is 0.9 J/K/g).

(a) After a short time, what is the temperature of the water?

(b) What simplifying assumptions did you have to make? (1) The thermal energy of the water doesn't change. (2) Thermal energy of the aluminum doesn't change. (3) Energy transfer between the system (water plus pan) and the surroundings was negligible during this time. (4) The heat capacities for both water and aluminum hardly change with temperature in this temperature range.

(c) Next you place the pan on a hot electric stove. While the stove is heating the pan, you use a beater to stir the water, doing 29541 J of work and the temperature of the water and pan increases to 86.90C. How much energy transfer due to a temperature difference was there from the stove into the system consisting of the water plus the pan?

During one complete oscillation of a mass on a spring (oneperiod), what is the change in potential energy of the mass+spring system, in the absence of friction?

You place into an insulated container a 1.5 kg block of aluminium at a temperature of 45°C in contact with a 2.1 kg block of copper at a temperature of 18°C. The specific heat of aluminium is 0.91 J/g and the specific heat of copper is 0.39 J/g. What is the final temperature of the two blocks?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free