Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Niagara Falls is about 50m high. What is the temperature rise in kelvins of the water from just before to just after it hits the rocks at the bottom of the falls, assuming negligible air resistance during the fall and that the water doesn't rebound but just splats onto the rock? It is helpful (but not essential) to consider a 1g drop of water.

Short Answer

Expert verified

The temperature rises at 0.12 K .

Step by step solution

01

Definition of Thermal Energy

Thermal energy is the energy that controls the temperature of a system. The passage of thermal energy is what is referred to as heat. Thermodynamics is a discipline of physics that studies how heat is exchanged across systems and how work is performed throughout the process.

The thermal energy is given byQ=mcT where mis mass of substance, Tis change in temperature and cis specific heat.

02

Finding Rise in temperature

In the given case, thermal energy is change in energy so, replace QbyEin the formula of thermal energy and solve for T.

E=mcTT=Emc

SubstituteE=mghand simplify.

T=mghmc=ghc

Substitute g=9.8ms-2,h=50mand C=4.2×103J.kg-1.K-1into the obtained formula to obtain the rise in temperature.

T=9.8ms-250m4.2×103J.kg-1.K-1=0.12K

Therefore, the temperature rises at 0.12 K .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Describe a situation in which it would be appropriate to neglect the effects of air resistance.

Describe a situation in which neglecting the effects of air resistance would lead to significantly wrong predictions.

Question: Figure 7.48 is a portion of a graph of energy terms vs, time for a mass on a spring, subject to air resistance. Identify and label the three curves as to what kind of energy each represents. Explain briefly how you determined which curve represented which kind of energy.

A man sits with his back against the back of a chair, and he pushes a block of mass m=2kgstraight forward on a table in front of him, with a constant force F=30 N, moving the block a distance D=0.3 m. The block starts from rest and slides on a low-friction surface. (a) How much work does the man do on the block? (b) What is the final kinetic energy K of the block? (c) What is the final speed V of the block? (d) How much time tdoes this process take? (e) Consider the system of the man plus the block: how much work does the chair do on the man? (f) What is the internal energy of the man?

Now suppose that the man is sitting on a train that is moving in a straight line with speed V=15m/s, and you are standing on the ground as the train goes by, moving to your right. From your perspective (that is, in your reference frame), answer the following questions: (g) What is the initial speed localid="1657950350828" viof the block? (h) What is the final speedvfof the block? (i) What is the initial kinetic energy of the block? (j) What is the final kinetic energykfof the block? (k) What is the change in kinetic energyK=Kf-Ki, how does this compare with the change in kinetic energy in the man’s reference frame? (l) How far does the block movex? (m) How much work does the man do on the block, and how does this compare with the work done by the man in his reference frame and with Kin your frame? (n) How far does the chair move? (o) Consider the system of the man plus the block: how much work does the chair do on the man, and how does this compare with the work done by the chair in the man’s reference frame? (p) What is the internal energy change of the man, and how does this compare with the internal energy change in his reference frame?

You lift a heavy box. We’ll consider this process for different choices of system and surroundings.

(a) Choose the box as the system of interest. What objects in the surroundings exert significant forces on this system?

(b) Choose you and the box as the system of interest. What objects in the surroundings exert significant forces on this system?

(c) Choose you, the box, and the Earth as the system of interest. What objects in the surroundings exert significant forces on this system?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free