Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A basketball has a mass of 570 g. Moving to the right and heading downward at an angle of 30 to the vertical, it hits the floor with the speed of 5 m/s and bounces up with nearly the same speed, again moving to the right an angle of 30 degree to the vertical. What was the momentum changep?

Short Answer

Expert verified

Answer

The momentum change will be ( 0,4.93,0) kg .m/s

Step by step solution

01

Identification of given data

The given data listed below as,

  • Mass of the basketball m= 570 g = 0.57 kg,.
  • Velocity, v = 5m/s.
  • θ=30°
02

The momentum change 

It bounces up with the same speed, again moving to the right at an angle of 30 degrees to the vertical. We need to find the change in momentum.

03

 Step 3: Calculation for the momentum change

For the change in momentum, this will become:

p=mvcosθ--mvcosθp=2mvcosθ

Substituting the values and we get,

p=2×0.57kg×m/s×cos30°=4.93kg.m/s

The change will be in the y-direction only.

Hence, the momentum change will be.

0,4.93,0kg.m/s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You jog at a steady speed of 2 m/s. You start from the location <0,0,0>and for the first 200 s your direction is given by the unit vector <1,0,0>. Next you jog for 300 s in the direction given by the unit vector <cos45,0,cos45>. Finally you jog for 150s in the direction given by the unit vector <cos60,0,cos30>. (a) Now what is your position? (b) What was your average velocity?

In Figurethree vectors are represented by arrows in the xyplane. Each square in the grid represents one meter. For each vector, write out the components of the vector, and calculate the magnitude of the vector.

Figure 1.56

Place a ball on a book and walk with the book in uniform motion. Note that you don't really have to do anything to the ball to keep the ball moving with constant velocity (relative to the ground) or to keep the ball at rest (relative to you). Then stop suddenly, or abruptly change your direction or speed. What does Newton's first law of motion predict for the motion of the ball (assuming that the interaction between the ball and the book is small)? Does the ball behave as predicted? It may help to take the point of view of a friend who is standing still, watching you.

A proton in an accelerator attains a speed of 0.88c. What

is the magnitude of the momentum of the proton?

Question: Which of the following statements about the velocity and momentum of an object are correct? (1) The momentum of an object is always in the same direction as its velocity (2) The momentum of an object can be either in the same direction as its velocity or in the opposite direction. (3) The momentum of an object is perpendicular to its velocity. (4) The direction of an object's momentum is not related to the direction of its velocity. (5) The direction of an object's momentum is tangent to its path.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free