Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A basketball has a mass of 570g. Heading straight downward, in the y-direction, it hits the floor with the speed of 5 m/s and rebounds straight up with nearly the same speed. What was the momentum change p?

Short Answer

Expert verified

Answer

The momentum change will be ( 0,5.7,0 ) kg m/s.

Step by step solution

01

Identification of given data

The given value is below as,

  • Mass of the basketball m= 570 g =0.57 kg.
  • Value of initial and final velocities,vi=0,-5,0m/s,vf=0,5,0m/s
02

Momentum 

Momentum is nothing but the product of the mass of the object and the velocity of the object.

03

Calculation for the momentum change

Initial momentum can be calculated as:

pi=mvi

Initial momentum can be calculated as:

pf=mvf

Change in the momentum can be written as follows:

p=pf-pi

Putting the values and we get,

p=mvf-mvi=0.57kg×0,5,0m/s-0.57kg×0,-5,0m/s=2×0.57kg×0,5,0m/s=0,5.7,0kg.m/s

Therefore, the change in momentum in the tennis ball is=0,5.7,0kg.m/s .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In the periodic table on the inside front cover of this book (or one you find on the internet), for each element there is given the "atomic number," the number of protons or electrons in an atom, and the "atomic mass," which is essentially the number of nucleons, protons plus neutrons, in the nucleus, averaged over the various isotopes of the element, which differ in the number of neutrons. Make a graph of the number of neutrons vs. the number of protons in the elements. You needn't graph every element, just enough to see the trend. What do you observe about the data? (This reflects the need for more neutrons in proton-rich nuclei in order to prevent the electric repulsion of the protons of each other from destroying the nucleus.)

Which of the following observers might observe something that appears to violate Newton's first law of motion? Explain why. (1) A person standing still on a street corner (2) A person riding on a roller coaster (3) A passenger on a starship traveling at 0.75c toward the nearby star Alpha Centauri (4) An airplane pilot doing aerobatic loops (5) A hockey player coasting across the ice.

On a piece of graph paper, draw arrows representing the following vectors. Make sure the tip and tail of each arrow you draw are clearly distinguishable. (a) Placing the tail of the vector at 5,2,0, draw an arrow representing the vectorp=7,3,0 Label itp . (b) Placing the tail of the vector at5,8,0 , draw an arrow representing the vectorp . Label it p.

comet travels in an elliptical path around a star, in the direction shown in Figure 1.41. Which arrow best indicates the direction of the comet’s instantaneous velocity vector at each of the numbered locations in the orbit?

An object in the shape of a thin ring has radius a and mass M. A uniform sphere with mass m and radius R is placed with its center at a distance x to the right of the center of the ring, along a line through the center of the ring, and perpendicular to its plane (see Fig. E13.35). What is the gravitational force that the sphere exerts on the ring-shaped object? Show that your result reduces to the expected result when x is much larger than a.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free