Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Figure 1.55 shows several arrows representing vectors in the xy plane. (a) Which vectors have magnitudes equal to the magnitude of a? (b) Which vectors are equal to a?

Short Answer

Expert verified

(a) Vectors and have same magnitude as .

(b) Vectors and are equal to .

Step by step solution

01

Magnitude and direction of vectors 

While comparing magnitude of vectors, one can compare the length of the rays.To check equality of vectors, both direction and length of rays must be same.

02

Finding vectors whose magnitude is same as 

(a)

By looking at the figure, it is clear that vectors c,eand fhave same magnitude as of vector a. This is because the three rays representing these vectors have same length as that of vectora .

Therefore, the vectors c,eand fhave same magnitude as a.

03

Finding vectors equal to a⇀ 

(b)

It is clearly evident from the figure that vectors cand fhave same direction and magnitude as of vector a. So, both these are equal to vector a.

Therefore, the vectors cand fare equal to a.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the vectors r1and r2represented by arrows in Figure 1.20. Are these two vectors equal? (b) If a=<400,200-100>m/s2,and c=a, what is the unit vector c^in the direction of c^?

Figure 1.20

In the periodic table on the inside front cover of this book (or one you find on the internet), for each element there is given the "atomic number," the number of protons or electrons in an atom, and the "atomic mass," which is essentially the number of nucleons, protons plus neutrons, in the nucleus, averaged over the various isotopes of the element, which differ in the number of neutrons. Make a graph of the number of neutrons vs. the number of protons in the elements. You needn't graph every element, just enough to see the trend. What do you observe about the data? (This reflects the need for more neutrons in proton-rich nuclei in order to prevent the electric repulsion of the protons of each other from destroying the nucleus.)

A proton in an accelerator attains a speed of 0.88c. What

is the magnitude of the momentum of the proton?

(a) Which of the following do you see moving with constant velocity? (1) A ship sailing northeast at a speed of 5 meters per second (2) The Moon orbiting the Earth (3) A tennis ball traveling across the court after having been hit by a tennis racket (4) A can of soda sitting on a table (5) A person riding on a Ferris wheel that is turning at a constant rate. (b) In which of the following situations is there observational evidence for significant interaction between two objects? How can you tell? (1) A ball bounces off a wall with no change in speed. (2) A baseball that was hit by a batter flies toward the outfield. (3) A communications satellite orbits the Earth. (4) A space probe travels at constant speed toward a distant star. (5) A charged particle leaves a curving track in a particle detector.

A man is standing on the roof of a building with his head at the position<12,30,13>m. He sees the top of a tree, which is at the position <-25,35,43>m. (a) What is the relative position vector that points from the man's head to the top of the tree? (b) What is the distance from the man's head to the top of the tree?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free