Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Would the inductance ‘of a solenoid be larger or smaller if the solenoid is filled with iron? Explain briefly.

Short Answer

Expert verified

The inductance of a coil filled with iron would be larger than that of a solenoid with air core.

Step by step solution

01

A concept:

Inductance is defined as the tendency of an electrical conductor to resist a change in the electrical current flowing through it.

02

The self-inductance of a solenoid:

The self-inductance Lof a solenoid is given by the expression,

L=μ0N2dπR2

Here, the length of the solenoid is d, its radius is R, and the number of loops it contains is N. The term μ0is called permeability of free space. This term comes into play when the solenoid has an air core.

03

The inductance of a solenoid be larger or smaller:

If the solenoid were to be filled with iron, then the permeability μof iron is to be used in the expression instead of μ0.

Rewriting expression for a solenoid with iron core,

L=μN2dπR2

The value of permeability of iron is much higher (of the order 200,00) than the value of that for free space.

The inductance therefore increases.

Hence, the inductance of a coil filled with iron would be larger than that of a solenoid with air core.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Figure 22.52 shows four different ways to connect the copper wire. Based on the analysis we have just carried out, involving identifying whether or not there is a battery-like emf in a loop, what is the brightness of both bulbs in circuits 1,2,3and 4?

Question: A thin rectangular coil lies flat on a low-friction table (Figure 22.75). A very long straight wire also lies flat on the table, a distance zfrom the coil. The wire carries a conventional current lto the right as shown, and this current is decreasing: I=a-bt, where tis the time in seconds, and aand bare positive constants. The coil has length Land width w, where w << z. It has Nturns of wire with total resistance R.

What are the initial magnitude and direction of the nonzero net force that is acting on the coil?You can neglect friction. Explain in detail. If you must make simplifying assumptions, state clearly what they are, but bear in mind that the net force is not zero.

When the magnet is moved very far away, how much flux is inside the ring compared to the original flux Φ0? How much of this flux is due to the current in the ring?

In Figure 22.72 a toroid has a rectangular cross section with an inner radius r1=9cm, an outer radius r2=12cm, and a height h=5cm, and it is wrapped around by many densely packed turns of current-carrying wire (not shown in the diagram). The direction of the magnetic field inside the windings is shown on the diagram. There is essentially no magnetic field outside the windings. A wire is connected to a sensitive ammeter as shown.

The resistance of the wire and ammeter is R=1.4cm.

The current in the windings of the toroid is varied so that the magnetic field inside the windings, averaged over the cross section, varies with time as shown in Figure 22.73:

Make a careful graph of the ammeter reading, including sign, as a function of time. Label your graph, and explain the numerical aspects of the graph, including signs.

Two coils of wire are near each other, positioned on a common axis (Figure 22.57). Coil 1 is connected to a power supply whose output voltage can be adjusted by turning a knob so that the current I1in coil 1 can be varied, and I1is measured be ammeter 1.

Current I2in coil 2 is measured by ammeter 2. The ammeters have needles that deflect positive or negative depending on the direction of current passing through the ammeter, and ammeters read positive if conventional current flows into the + terminal. Figure 22.58 is a graph of I1vs. time. Draw a graph of I2vs. time over the same time interval. Explain your reasoning.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free