Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

There was transfer of energy of 5000 J into a system due to a temperature difference, and the entropy increased by 10 J/K. What was the approximate temperature of the system, assuming that the temperature didn’t change very much?.

Short Answer

Expert verified
  • The approximate temperature of the system is 500K

Step by step solution

01

Identification of given data

  • The energy transferred isQ=5000J.
  • The increase in entropy isS=10J/K.
02

Concept of entropy

A condition of disorder, unpredictability, or uncertainty is usually related to the scientific notion of entropy, which is also a physical characteristic that can be measured.

The entropy of a system is given by,

S=QT…… (i)

Here Qis the energy transfer of the system.

Tis the temperature change of the system.

03

Determination of the change in temperature

The change in temperature can be evaluated using equation (i),

10J/K=5000JTT=500010·1J1J/KT=5001KT=500K

Thus, the change in temperature of the system is found to be 500K.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A nanoparticle containing 6 atoms can be modeled approximately as an Einstein solid of 18 independent oscillators. The evenly spaced energy levels of each oscillator are4×1021 Japart. (a) When the nanoparticle’s energy is in the range5×4×1021 JJ to,6×4×1021 J what is the approximate temperature? (In order to keep precision for calculating the specific heat, give the result to the nearest tenth of a kelvin.) (b) When the nanoparticle’s energy is in the rangerole="math" localid="1657107429075" 8×4×1021 Jto,9×4×1021 J what is the approximate temperature? (In order to keep precision for calculating the specific heat, give the result to the nearest tenth of a degree.) (c) When the nanoparticle’s energy is in the range5×4×1021 Jto9×4×1021 J, what is the approximate heat capacity per atom? Note that between parts (a) and (b) the average energy increased from 5.5 quanta to 8.5 quanta. As a check, compare your result with the high temperature limit of 3kB.

This question follows the entire chain of reasoning involved in determining the specific heat of an Einstein solid. Start with two metal blocks, one consisting of one mole of aluminum (27 g) and the other of one mole of lead (207 g), both initially at a temperature very near absolute zero (0 K). From measurements of Young’s modulus one finds that the effective stiffness of the interatomic bond modeled as a spring is 16N/mfor aluminum and 5 N/m for lead. (a) Is the number of quantized oscillators in the aluminum block greater, smaller, or the same as the number in the lead block? (b) What is the initial entropy of each block? (c) In which metal is the energy spacing of the quantized harmonic oscillators larger? (d) If we add 1 J of energy to each block, which metal now has the larger number of energy quanta? (e) In which block is the number of possible ways of arranging this of energy greater? (f) Which block now has the larger entropy? (g) Which block experienced a greater entropy change? (h) Which block experienced the larger temperature change? (i) Which metal has the larger specific heat at low temperatures? (j) Does your conclusion agree with the actual data given in Figure 12.33? (The numerical data are given in a table accompanying Problem P64.)

At room temperature (293 K), calculate kBT in joules and eV.

In Chapter 4 you determined the stiffness of the interatomic “spring” (chemical bond) between atoms in a block of lead to be 5 N/m, based on the value of Young’s modulus for lead. Since in our model each atom is connected to two springs, each half the length of the interatomic bond, the effective “interatomic spring stiffness” for an oscillator is

4 × 5 N/m = 20 N/m. The mass of one mole of lead is 207 g (0.207 kg). What is the energy, in joules, of one quantum of energy for an atomic oscillator in a block of lead?

What is the advantage of plotting the (natural) logarithm of the number of ways of arranging the energy among the many atoms (natural logarithm of the number of microstates)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free