Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Verify that this equation gives the correct number of ways to arrange 0, 1, 2, 3, or 4 quanta among 3 one-dimensional oscillators, given in earlier tables (1, 3, 6, 10, 15).






Q1

Q2

#ways1

#ways2

#ways1

#ways2

0

4

1

15

15

1

3

3

10

30

2

2

6

6

36

3

1

10

3

30

4

0

15

1

15






Short Answer

Expert verified

The equation gives the correct number of ways to arrange4quanta among 3 one-dimensional oscillators.

Step by step solution

01

Identification of given data

  • The given number to arrange is 0,1,2,3,4 quanta.
02

Concept of permutation

A sequential or linear arrangement of its members, or if the set is already sorted, a reordering of its pieces. An act or procedure of altering the overall sequential order of a predetermined set is referred to as a "permutation."

03

Determination of the number of ways to arrange quanta in one-dimensional oscillators

The number of ways microstates can be evaluated using

Ω=q+N-1!q!N-1!

Substitute values in the above equation,

Ω=4+3-1!4!3-1!Ω=6!4!2!Ω=15

Thus, the result is the same in the equation and tabular form.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explain qualitatively the basis for the Boltzmann distribution. Never mind the details of the math for the moment. Focus on the trade-offs involved with giving energy to a single oscillator vs. giving that energy to a large object.

A box contains a uniform disk of mass M and radius R that is pivoted on a low-friction axle through its centre (Figure 12.58). A block of mass m is pressed against the disk by a spring, so that the block acts like a brake, making the disk hard to turn. The box and the spring have negligible mass. A string is wrapped around the disk (out of the way of the brake) and passes through a hole in the box. A force of constant magnitude F acts on the end of the string. The motion takes place in outer space. At time tithe speed of the box is vi, and the rotationalspeed of the disk is ωi. At time tfthe box has moved a distance x, and the end of the string has moved a longer distance d, as shown.

(a) At time tf, what is the speed vfof the box? (b) During this process, the brake exerts a tangential friction force of magnitude f. At time tf, what is the angular speed ωfof the disk? (c) At time tf, assume that you know (from part b) the rotational speed ωfof the disk. From time tito time tf, what is the increase in thermal energy of the apparatus? (d) Suppose that the increase in thermal energy in part (c) is 8×104J. The disk and brake are made of iron, and their total mass is 1.2kg. At time titheir temperature was . At time , what is their approximate temperature?

The entropy S of a certain object (not an Einstein solid) is the following function of the internal energy E:S=bE1/2, where b is a constant. (a) Determine the internal energy of this object as a function of the temperature.

(b) What is the specific heat of this object as a function of the temperature?

How does the speed of sound in a gas change when you raise the temperature from0°CTO20°C ? Explain briefly.

Figure 12.57 shows a one-dimensional row of 5 microscopic objects each of mass 4.10-26kg, connected by forces that can be modeled by springs of stiffness 15 N/m. These objects can move only along the x axis.


(a) Using the Einstein model, calculate the approximate entropy of this system for total energy of 0, 1, 2, 3, 4, and 5 quanta. Think carefully about what the Einstein model is, and apply those concepts to this one-dimensional situation. (b) Calculate the approximate temperature of the system when the total energy is 4 quanta. (c) Calculate the approximate specific heat on a per-object basis when the total energy is 4 quanta. (d) If the temperature is raised very high, what is the approximate specific heat on a per-object basis? Give a numerical value and compare with your result in part (c).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free