Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A carbon nanoparticle (very small particle) contains 6000 carbon atoms. According to the Einstein model of a solid, how many oscillators are in this block?

Short Answer

Expert verified

The number of oscillators in the block is 18000

Step by step solution

01

Identification of the given data

The given data can be listed below as,

  • The number of carbon atoms is, N=6000
02

Determination the number of oscillators in a carbon nanoparticles block.

The relation of number of oscillators in the block is expressed as,

n=3N

Here n represents the number of oscillators in the block

Substitute all the known values in the above relation.

n=3×6000=18000

Thus, the number of oscillators in the block is .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A nanoparticle containing 6 atoms can be modeled approximately as an Einstein solid of 18 independent oscillators. The evenly spaced energy levels of each oscillator are4×1021 Japart. (a) When the nanoparticle’s energy is in the range5×4×1021 JJ to,6×4×1021 J what is the approximate temperature? (In order to keep precision for calculating the specific heat, give the result to the nearest tenth of a kelvin.) (b) When the nanoparticle’s energy is in the rangerole="math" localid="1657107429075" 8×4×1021 Jto,9×4×1021 J what is the approximate temperature? (In order to keep precision for calculating the specific heat, give the result to the nearest tenth of a degree.) (c) When the nanoparticle’s energy is in the range5×4×1021 Jto9×4×1021 J, what is the approximate heat capacity per atom? Note that between parts (a) and (b) the average energy increased from 5.5 quanta to 8.5 quanta. As a check, compare your result with the high temperature limit of 3kB.

Approximately what fraction of the sea-level air density is found at the top of Mount Everest, a height of 8848 m above sea level?

A gas is made up of diatomic molecules. At temperature T1,the ratio of the number of molecules in vibrational energy state 2to the number of molecules in the ground state is measured, andfound to be 0.35. The difference in energy between state 2 andthe ground state is ΔE. (a) Which of the following conclusions is

correct? (1) EkBT1, (2) EkBT1, (3)EkBT1

(b) At a different temperature T2, the ratio is found to be 8×10-5. Which of the following is true? (1) EkBT2, (2) EkBT2,(3) EkBT2.

Suppose that you look once every second at a system with 300oscillators and100 energy quanta, to see whether your favorite oscillator happens to have all the energy (all100 quanta) at the instant you look. You expect that just once out ofrole="math" localid="1655710247969" 1.7×1096 times you will find all of the energy concentrated on your favorite oscillator. On the average, about how many years will you have to wait? Compare this to the age of the Universe, which is thought to be aboutrole="math" localid="1655710262469" 1×1010 years.role="math" localid="1655710345899" 1Yπ×107S

The entropy S of a certain object (not an Einstein solid) is the following function of the internal energy E:S=bE1/2, where b is a constant. (a) Determine the internal energy of this object as a function of the temperature.

(b) What is the specific heat of this object as a function of the temperature?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free