Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Summarize the differences and similarities between different energy levels in a quantum oscillator. Specifically for the first two levels in figure 8.26, compare the angular frequency Ks/m, the amplitude , and the kinetic energyk at the same value of . ( In a quantum-mechanical analysis the concepts of angular frequency and amplitude require reinterpretation. Nevertheless, there remain elements of the classical picture. For example, larger amplitude corresponds to a higher probability of observing a large stretch.)

Short Answer

Expert verified

The direction of the conventional current in the wire is in opposite direction.

The number of levels above the ground state of the spring oscillator is 2×1031

Step by step solution

01

Determine the quantized vibrational energy levels for an atomic harmonic oscillator.

The quantized vibrational energy levels for an atomic harmonic oscillator are given by,

EN=Nhω0+E0

Here,

N is the principal quantum number.

E0 is the ground state energy of harmonic oscillator.

ω0 is the angular frequency.

h is Planck’s constant.

ks is interatomic spring stiffness.

m is mass of an atom.

So the energy of a spring-mass oscillator is given by,

E=12ksA2

where A is amplitude of oscillation.

02

Determine the number of levels above the ground state of the spring mass oscillator.

On the equating the equation EN=Nhω0+E0 andE=12ksA2 . We get,

Nhω0+E0=12ksA2Nhω0+12hω0=12ksA2N+12hω0=12ksA2N+12hksm=12ksA2

By simplifying we get,

N+12=12ksA2hksmN=12ksA2hksm-12

On substituting the known values on the above equation. We get,

N=120.70.221·05×10-340.70.02-12=2×1031

The number of levels above the ground state of the spring oscillator is 2×1031

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The Frank Hertz experiment involved shooting electrons into a low density gas of mercury atoms and observing discrete amounts of kinetic energy loss by the electrons. Suppose that instead the similar experiment is done with a very cold gas of atomic hydrogen, so that all of the hydrogen atoms are initially in ground state. If the kinetic energy of an electron is 11.6 eV just before it collides with a hydrogen atom. How much kinetic energy will the electron have just after it collides with and excites the hydrogen atom?

At t =0 all of the atoms in a collection of 10000 atoms are in a excited state whose lifetime is 25 ns. Approximately how many atoms will still be in excited state at t= 12 ns.

The photon energy for green light lies between the values for red and violet light. What is the approximate energy of the photons in green light? The intensity of sunlight above the Earth’s atmosphere is about 1400 W (J/s) per square meter. That is, when sunlight hits perpendicular to a square meter of area, about 1400 W of energy can be absorbed. Using the photon energy of green light, about how many photons per second strike an area of one square meter? (This is why the lumpiness of light was not noticed for so long.)

Make a rough estimate of this uniform energy spacing in electron volts (where 1eV=1.6×1019 J). You will need to make some rough estimates of atomic properties based on prior work. For comparison with the spacing of these vibrational energy states, note that the spacing between quantized energy levels for "electronic" states such as in atomic hydrogen is of the order of several electron volts.

(b) List several photon energies that would be emitted if a number of these vibrational energy levels were occupied due to collisional excitation. To what region of the spectrum (x-ray, visible, microwave, etc.) do these photons belong? (See Figure 8.1 at the beginning of the chapter.)

Suppose we have a reason to suspect that a certain quantum object has only three quantum states.When we excite a collection of such objects we observe that they emit electromagnetic radiation of three different energies: 0.3eV(infrared), 2.0eV(visible), and 2.3eV(visible).

(a) Draw a possible energy-level diagram for one of the quantum objects, which has three bound states. On the diagram, indicate the transitions corresponding to the emitted photons, and check that the possible transitions produce the observed photons and no others. The energyK+U of the ground state is -4eV. Label the energies of each level ( K+U, which is negative).

(b) The material is now cooled down to a very low temperature, and the photon detector stops detecting photon emissions. Next a beam of light with a continuous range of energies from infrared through ultraviolet shines on the material, and the photon detector observes the beam of light after it passes through the material. What photon energies in this beam of light are observed to be significantly reduced in intensity ("dark absorption lines")? Energy of highest-energy dark line: eV Energy of lowest-energy dark line: eV

(c) There exists another possible set of energy levels for these objects which produces the same photon emission spectrum. On an alternative energy-level diagram, different from the one you drew in part (a), indicate the transitions corresponding to the emitted photons, and check that the possible transitions produce the observed photons and no others. When you are sure that your alternative energy-level diagram is consistent with the observed photon energies, enter the energies of each level (K+U, which is negative).

(d) For your second proposed energy-level scheme, what photon energies would be observed to be significantly reduced in intensity in an absorption experiment ("dark absorption lines")? (Given the differences from part (b), you can see that an absorption measurement can be used to tell which of your two energy-level schemes is correct).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free