Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You move from location i at 2,5,4mto location f at 3,5,9m. All along this path there is a nearby uniform electric field whose value is1000,200,-500N/C. . Calculate,ΔV=Vf-Vi including signs and units.

Short Answer

Expert verified

The potential difference between two locations is1500V

Step by step solution

01

Change in potential between two positions

The uniform electric field exerts a certain amount of force on the particle moving through the field between two locations.

The potential difference between two locations can be determined by the product of the uniform electric field and the distance between two locations.

02

Given data

The initial location is,i=2,5,4m.

The final location is,f=3,5,9m.

The value of the uniform electric field is, E=1000,200,-500N/C.

03

The potential difference between two locations

The distance moved from location i to location f is given by,

Δlif=3,5,9m-2,5,4mΔlif=1,0,5m

Then the formula for the potential difference between two locations is given by,

ΔVif=-EΔIifΔVif=-1000,200,-5001,0,5Nm/C×1V1N.m/CΔVif=-(1000×1+200×0-500×5)VΔVif=-(1000+0-2500)VΔVif=1500V

Hence, the potential difference between two locations is 1500V..

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A thin spherical shell of radius \({R_1}\)made of plastic carries a uniformly distributed negative charge \( - {Q_1}\). A thin spherical shell of radius \({R_2}\)made of glass carries a uniformly distributed positive charge \( + {Q_2}\). The distance between centers is \(L\), as shown in Figure 16.80. (a) Find the potential difference \({V_B} - {V_A}\). Location A is at the center of the glass sphere, and location \(B\) is just outside the glass sphere. (b) Find the potential difference \({V_C} - {V_B}\). Location \(B\) is just outside the glass sphere, and location \(C\) is a distance d to the right of \(B\). (c) Suppose the glass shell is replaced by a solid metal sphere with radius R2 carrying charge \( + {Q_2}\). Would the magnitude of the potential difference \({V_B} - {V_A}\) be greater than, less than, or the same as it was with the glass shell in place? Explain briefly, including an appropriate physics diagram.

Two very large disks of radius Rare carrying uniformly distributed charges QAand QB. The plates are parallel and 0.1mmapart, as shown in Figure 16.70. The potential difference between the plates isVB-VA=-10V. (a) What is the direction of the electric field between the disks? (b) Invent values of QA, QBand Rthat would make VB-VA=-10V.

Question: At a particular instant an electron is traveling with speed (6000 m/s) . (a) What is the kinetic energy of the electron? (b) If a proton were traveling at the same speed (6000 m/s), what would be the kinetic energy of the proton?

An isolated parallel-plate capacitor of area \({A_1}\) with an air gap of length \({s_1}\) is charged up to a potential difference\(\Delta {V_1}\). A second parallel-plate capacitor, initially uncharged, has an area \({A_2}\) and a gap of length \({s_2}\)filled with plastic whose dielectric constant is\(K\). You connect a wire from the positive plate of the first capacitor to one of the second capacitor, and you connect another wire from the negative plate of the first capacitor to the other plate of the second capacitor. What is the final potential difference across the first capacitor?

A particle with charge\( + {q_1}\)and a particle with charge\( - {q_2}\)are located as shown in figure 16.91. What is the potential (relative to infinity) at location A.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free