Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An electric field of magnitude 190N/C is applied to a solution containing chloride ions. The mobility of chloride ions in solution is 7.91×10-8(m/s)/(N/C).What is the average drift speed of the chloride ions in the solution?

Short Answer

Expert verified

1.5×10-5m/s

Step by step solution

01

Identification of given data

  • The magnitude of the electric field is, E=190N/C
  • The mobility of chloride ions is, μ=7.91×10-8m/s/N/C
02

Explanation of Drift speed

The drift speed can be determined by taking the product of the electric field and the mobility of ions. It is the average velocity attained by the charged particles in the presence of the electric field.

03

Determination of the average drift speed of chloride ions

The expression for the drift speed of ions is as follows,

ν=E×μ

Here,Eis magnitude of the electric field, and μis the mobility of chloride ions.

For E=190N/Cand μ=7.91×10-8m/s/N/C.

ν=190N/C7.91×10-8m/s/N/C=1.5×10-5m/s

Thus, the average drift speed of chloride ions in the solution is 1.5×10-5m/s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Blocks A and B are identical metal blocks. Initially block A is neutral, and block B has a net charge of5nC.Using insulating handles, the blocks are moved so they touch each other. After touching for a few seconds, the blocks are separated (again using insulating handles). (a) What is the final charge of block A? (b) What happened while the blocks were in contact with each other? (1) Protons moved from block B to block A. (2) Positrons moved from block B to block A. (3) Electrons moved from block A to block B. (4) Both protons and electrons moved. (5) No charged particles moved.

You have two identical neutral metal spheres labeled A and B, mounted on insulating posts, and you have a plastic pen that charges negatively when you rub it on your hair (Figure 14.77).


(a) (+ and −) Explain in detail, including diagrams, what operations you would carry out to give sphere A some positive charge and sphere B an equal amount of negative charge. (b) (+ and +) Explain in detail, including diagrams, what operations you would carry out on the neutral spheres to give sphere A some positive charge and sphere B an equal amount of positive charge (the spheres are initially uncharged).

Criticize the following statement: "Since an atom's electron cloud is spherical, the effect of the electrons cancels the effect of the nucleus, so a neutral atom can't interact with a charged object." ("Criticize" means to explain why the given statement is inadequate or incorrect, as well as to correct it.)

Criticize the following statement: “When you rub your finger along the slick side of a U tape, the excess charges flow onto your finger, and this discharges the tape.” Draw diagrams illustrating a more plausible explanation.

A neutral copper block is polarized as shown in Figure 14.90, due to an electric field made by external charges (not shown). Which arrow (a–j) in Figure 14.90 best indicates the direction of the net electric field at location B, which is inside the copper block ?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free