Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A neutral copper block is polarized as shown in Figure 14.90, due to an electric field made by external charges (not shown). Which arrow (a–j) in Figure 14.90 best indicates the direction of the net electric field at location B, which is inside the copper block ?

Short Answer

Expert verified

The arrow j best indicates the direction of the net electric field at location B, which is inside the copper block

Step by step solution

01

Significance of the electric field in the conductor

The electric field is referring to a region that is beneficial for a charged particle to exert force on another charged particle.

Also,the magnitude of the electric field is zero inside a conductor but it has some value on the surface of the conductor.

The concept of the electric field gives the direction of the net electric field at location B.

02

Determination of the direction of the net electric field

The other arrows apart from j are the incorrect representation of the direction as they are directed in the other direction with some value of magnitude. But, the magnitude of the electric field is zero inside a conductor.

When a particular conductor is placed inside an electric field, the net charges mainly lie on the conductor’s surface and thus, no electric field remains inside a conductor. However, as point B lies inside the copper block then the net electric field at point B is mainly zero and also the direction of the net electric field at point B is also zero.

Thus, the arrow j best indicates the direction of the net electric field at location B, which is inside the copper block.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A positively charged sphere is placed near a neutral block of nickel, as shown in Figure 14.92. (a) Which of the diagrams in Figure 14.93 best represents the equilibrium distribution of charge on the neutral nickel block?

(b) At location P inside the nickel block the electric field due to the charged sphere is <-625,0,0>N/C. At equilibrium, which of the following statements must be true? (1) It is not possible to determine the electric field at location P due only to charges on the surface of the nickel block. (2) The electric field at location P due only to charges on the surface of the nickel block is <0,0,0>N/C. (3) Because the net electric field at location P is <0,0,0>N/C, the field at P due only to charges on the surface of the polarized nickel block must be <625,0,0>N/C.

: A thin, hollow spherical plastic shell of radius \({\bf{R}}\)carries a uniformly distributed negative charge \({\bf{ - Q}}\). A slice through the plastic shell is shown in Figure 14.95. To the left of the spherical shell are four charges packed closely together as shown (the distance \({\bf{s}}\) is shown greatly enlarged for clarity). The distance from the center of the four charges to the center of the plastic shell is \({\bf{L}}\) , which is much larger than \({\bf{s}}\left( {{\bf{L}} \gg {\bf{s}}} \right)\). Remember that a uniformly charged sphere makes an electric field as though all the charge were concentrated at the center of the sphere.

(a)Calculate the \({\bf{x}}\) and \({\bf{y}}\) components of the electric field at location B, a distance \({\bf{b}}\) to the right of the outer surface of the plastic shell. Explain briefly, including showing the electric field on a diagram. Your results should not contain any symbols other than the given quantities \({\bf{R,Q,q,s,L}}\), and \({\bf{b}}\)(and fundamental constants). You need not simplify the final algebraic results except for taking into account the fact that \({\bf{L}} \gg {\bf{s}}\).

(b)What simplifying assumption did you have to make in part (a)?

(c)The plastic shell is removed and replaced by an uncharged metal ball, as in Figure 14.96. At location Ainside the metal ball, a distance \({\bf{b}}\)to the left of the outer surface of the ball, accurately draw and label the electric field\({{\bf{\vec E}}_{{\bf{ball}}}}\) due to the ball charges and the electric field \({{\bf{\vec E}}_{\bf{4}}}\) of the four charges. Explain briefly.

(d)Show the distribution of ball charges.

(e)Calculate the \({\bf{x}}\) and \({\bf{y}}\) components of the net electric field at location A.

You are wearing shoes with thick rubber soles. You briefly touch a negatively charged metal sphere. Afterward, the sphere seems to have little or no charge. Why? Explain in detail.

You have three metal blocks marked A, B, and C, sitting on insulating stands. Block A is charged, but blocks B and C are neutral (Figure 14.76).

Without using any additional equipment and without altering the amount of charge on block A, explain how you could make block B be chargedand block C be charged. Explain your procedure in detail, including diagrams of the charge distributions at each step in the process.

A large positive charge pulls on a distant electron. How does the net force on the electron change if a slab of glass is inserted between the large positive charge and the electron? Does the net force get bigger, smaller, or stay the same? Explain, using only labeled diagrams. (Be sure to show all the forces on the electron before determining the net force on the electron, not just the force exerted by the large positive charge. Remember that the part of the net force on the electron contributed by the large positive charge does not change when the glass is inserted: the electric interaction extends through matter.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free