Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Which of the following are true? Select all that apply. (1) In equilibrium, there is no net flow of mobile charged particles inside a conductor. (2) The electric field from an external charge cannot penetrate to the center of a block of iron. (3) The net electric field inside a block of aluminum is zero under all circumstances. (4) If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium. (5) The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.

Short Answer

Expert verified

Statement (1) is correct,In equilibrium, there is no net flow of mobile charged particles inside a conductor.

Statement (3) is correct,The net electric field inside a block of aluminum is zero under all circumstances.

Statement (4) is correct,If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.

Statement (5) is correct, The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.

Step by step solution

01

Significance of the equilibrium position

In the equilibrium position, no flow of the charge occurs between two charged particles and the value of the electric field is zero.

The concept of the equilibrium position gives the correct statement.

02

Determination of the correct answer

Statement (2) is false as an external “electric field” can go through the conductor, and the induced charges cancel the external field. So, anelectric field from an external charge can penetrate the center of a block of iron.

Statement (1) is true because no net electric field is there during the equilibrium state, and the mobile charges cannot flow as no forces are acting.

Statement (3) is true as the forces get induced on the mobile charges, and the charges flow freely as the conductor is not at equilibrium due to the net electric field.

Statement (4) is correct as the electric field inside a conductor only be zero if it is in equilibrium. Moreover, if the conductor is not in equilibrium, the field is not zero. So,If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.

Statement (5) is correct as, during the equilibrium state, the net electric field is zero inside a conductor and the copper block is in the equilibrium state.

Thus, statements (1), (3), (4), and (5) are true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A small glass ball is rubbed all over with a small silk cloth and acquires a charge of +5nC. The silk cloth and the glass ball are placed 30 cm apart.

(a) On a diagram like that shown in Figure 14.71, draw the electric field vectors qualitatively at the locations marked ×. Pay careful attention to directions and to relative magnitudes. Use dashed lines to explain your reasoning graphically, and draw the final electric field vectors with solid lines.

(b) Next, a neutral block of copper is placed between the silk and the glass.

On a diagram like that shown in Figure 14.72, carefully show the approximate charge distribution for the copper block and the electric field vectors inside the copper at the locations marked ×.

(c) The copper block is replaced by a neutral block of plastic. Carefully show the approximate molecular polarization of the plastic block at the locations marked × in Figure 14.73.

(d) Even if you have to state your result as an inequality, make as quantitative a statement as you can about the electric field at the location of the glass ball and the net force on the ball when the plastic block is in place compared to when there is no block. Explain briefly.

Carbon tetrachloride CCl4is a liquid whose molecules are symmetrical and so are not permanent dipoles, unlike water molecules. Explain briefly how the effect of an external charge on a beaker of water H2Odiffers from its effect on a beaker of CCl4. (Hint: Consider the behavior of the permanent dipole you made out of U and L tapes.)

A negatively charged iron block is placed in a region where there is an electric field downward (in the Y − direction) due to charges not shown. Which of the diagrams (a–f) in Figure 14.88 best describes the charge distribution in and/or on the iron block?

A large positive charge pulls on a distant electron. How does the net force on the electron change if a slab of glass is inserted between the large positive charge and the electron? Does the net force get bigger, smaller, or stay the same? Explain, using only labeled diagrams. (Be sure to show all the forces on the electron before determining the net force on the electron, not just the force exerted by the large positive charge. Remember that the part of the net force on the electron contributed by the large positive charge does not change when the glass is inserted: the electric interaction extends through matter.)

A student said, “When you touch a charged piece of metal, the metal is no longer charged: all the charge on the metal is neutralized.” As a practical matter, this is nearly correct, but it Isn’t exactly right. What’s wrong with saying that all the charge on the metal is neutralized?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free