Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Make a table showing the major differences in the electric properties of plastic, salt water, and copper. Include diagrams showing polarization by an external charge.

Short Answer

Expert verified

Out of the three elements, plastic has very low conductivity, it is considered a good insulator, and copper has higher conductivity, it is an excellent conductor and is used in electrical installations. Salt water has a low conductivity, it is a bad conductor.

Step by step solution

01

Concept/Significance of polarization

The polarisation is defined as the dipole moment per unit volume, and it is a vector quantity. Still, induction is only a phenomenon in which charges get polarised in the opposite direction.

02

Determination of the major differences in the electric properties of plastic, salt water, and copper

Material

Electric property

Conductivity

Electric use

copper

τ=59.6s/m

Excellent conductor

Salt water

τ=5s/m

Bad conductor

Plastic

τ=10-13s/m

Insulator

The behavior of the plastic and water molecules are shown in the figure above and in the case of copper, the polarity of free electrons is higher that has this material is observed.

Thus, out of the three elements, Plastic has very low conductivity, it is considered a good insulator, and copper has higher conductivity, it is an excellent conductor and is used in electrical installations. Salt water has a low conductivity, it is a bad conductor.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a)The positively charged particle shown in diagram 1 in Figure 14.94 creates an electric field \({{\bf{\vec E}}_{\bf{p}}}\) at location A. Which of the arrows (aj) in Figure 14.94 best indicates the direction of \({{\bf{\vec E}}_{\bf{p}}}\) at location A?

(b)Now a block of metal is placed in the location shown in diagram 2 in Figure 14.94. Which of the arrows (aj) in Figure 14.94 best indicates the direction of the electric field \({{\bf{\vec E}}_{\bf{m}}}\) at location Adue only to the charges in and/or on the metal block?

(c)\(\left| {{{{\bf{\vec E}}}_{\bf{p}}}} \right|\)is greater than \(\left| {{{{\bf{\vec E}}}_{\bf{m}}}} \right|\). With the metal block still in place, which of the arrows (aj) in Figure 14.94 best indicates the direction of the net electric field at location A?

(d)With the metal block still in place, which of the following statements about the magnitude of \({{\bf{\vec E}}_{\bf{p}}}\), the field due only to the charged particle, is correct?

(1) \(\left| {{{{\bf{\vec E}}}_{\bf{p}}}} \right|\)is less than it was originally, because the block is in the way.

(2) \(\left| {{{{\bf{\vec E}}}_{\bf{p}}}} \right|\)is the same as it was originally, without the block.

(3) \(\left| {{{{\bf{\vec E}}}_{\bf{p}}}} \right|\)is zero, because the electric field due to the particle can’t go through the block.

(e)With the metal block still in place, how does the magnitude of\({{\bf{\vec E}}_{{\bf{net}}}}\) at location Acompare to the magnitude of \({{\bf{\vec E}}_{\bf{p}}}\)?

(f)Which of the arrows (aj) in Figure 14.94 best indicates the direction of the net electric field at the center of the metal block (inside the metal)?

A positively charged sphere is placed near a neutral block of nickel, as shown in Figure 14.92. (a) Which of the diagrams in Figure 14.93 best represents the equilibrium distribution of charge on the neutral nickel block?

(b) At location P inside the nickel block the electric field due to the charged sphere is <-625,0,0>N/C. At equilibrium, which of the following statements must be true? (1) It is not possible to determine the electric field at location P due only to charges on the surface of the nickel block. (2) The electric field at location P due only to charges on the surface of the nickel block is <0,0,0>N/C. (3) Because the net electric field at location P is <0,0,0>N/C, the field at P due only to charges on the surface of the polarized nickel block must be <625,0,0>N/C.

Blocks A and B are identical metal blocks. Initially block A is neutral, and block B has a net charge of5nC.Using insulating handles, the blocks are moved so they touch each other. After touching for a few seconds, the blocks are separated (again using insulating handles). (a) What is the final charge of block A? (b) What happened while the blocks were in contact with each other? (1) Protons moved from block B to block A. (2) Positrons moved from block B to block A. (3) Electrons moved from block A to block B. (4) Both protons and electrons moved. (5) No charged particles moved.

Which of the following could be reasonable explanations for how a piece of invisible tape gets charged? Select all that apply. (1) Protons are pulled out of nuclei in one tape and transferred to another tape. (2) Charged molecular fragments are broken off one tape and transferred to another. (3) Electrons are pulled out of molecules in one tape and transferred to another tape. (4) Neutrons are pulled out of nuclei in one tape and transferred to another tape.

In Figure 14.84 there is a permanent dipole on the left with dipole moment μ1=Qs1 and a neutral atom on the right with polarizabilityα , so that it becomes an induced dipole with dipole moment μ2=Qs2=αE1, whereE1 is the magnitude of the electric field produced by the permanent dipole. Show that the force the permanent dipole exerts on the neutral atom isF(14πε0)212αμ12r7

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free