Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the magnitude of the electric field in air exceeds roughly3×106N3, the air break down and a spark forms. For a two-disk capacitor of radius 51 cm with a gap of 2 mm, if the electric field inside is just high enough that a spark occurs, what is the strength of the fringe field just outside the center of the capacitor?

Short Answer

Expert verified

The electric field strength of fringe outside the centre of capacitor is3×106N/C .

Step by step solution

01

Identification of given data

The given data can be listed below,

  • The magnitude of electric field of air is,E=qAε0=3×106N/C
  • The radius of disk isR=51cm1m100cm
  • The gap between two plates is,r=2mm1m1000mM
02

Concept/Significance of capacitor

the capacitor has an insulator (dielectric) inside it that prevents any charge flow through itself, so the two faces of the dielectric get charged when you charge the capacitor.

03

Determination of the electric field strength of fringe outside the center of capacitor

The electric field of fringe is given by.

The electric field on the capacitor is given by,

E=q2Aε0rR

Here, q is the charge on the disk, A is the area of disk, r is the distance between two disks andε0is the permittivity of free space.

Substitute all the values in the above equation,

Efringe=123×106N/C2×10-3m0.51m=5.88×103C

Thus, the electric field strength of fringe outside the centre of capacitor is 3×106N/C.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Graph the magnitude of the full expression for the field E of a rod along the midplane vs. r. Does Efall off monotonically(with distance)?

A thin plastic spherical shell of radius 5 cmhas a uniformly distributed charge of -25nCon its outer surface. A concentric thin plastic spherical shell of radius 8 cmhas a uniformly distributed charge of+64nC on its outer surface. Find the magnitude and direction of the electric field at distances of, 3 cm, 7 cm and 10 cmfrom the center. See Figure 15.63.

The rod in Figure 15.49 carries a uniformly distributed positive charge. Which arrow (a–h) best represents the direction of the electric field at the observation location marked with a red X?

A thin glass rod of length 80 cmis rubbed all over with wool and acquires a charge of 60 nC, distributed uniformly over its surface. Calculate the magnitude of the electric field due to the rod at a location 7 cmfrom the midpoint of the rod. Do the calculation two ways, first using the exact equation for a rod of any length, and second using the approximate equation for a long rod.

For a disk of radius 20 cm with uniformly distributed charge 7×10-6C, calculate the magnitude of the electric field on the axis of the disk, 5 mm from the center of the disk, using each of the following equations:

(a)E=(Q/A)2ε0[1-zR2+z21/2]

(b)EQ/A2ε0[1-zR]

(c)EQ/A2ε0

(d) How good are the approximate equations at this distance? (e) At what distance does the least accurate approximation for the electric field give a result that is closest to the most accurate: at a distance R/2, close to the disk, at a distance R, or far from the disk?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free