Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Graph the magnitude of the full expression for the field E of a rod along the midplane vs. r. Does Efall off monotonically(with distance)?

Short Answer

Expert verified

The plot of Evs r is

Efalls off monotonically with distance.

Step by step solution

01

Given data

A uniformly charged rod of length with an electric field is being measured at a distancer from it along the midplane.

02

Electric field due to a uniformly charged rod

The electric field due to a rod of lengthLand charge Quniformly distributed at a distancer from it on its mid plane is,

role="math" localid="1668497036664" E=14πε0Qrr2+(L2)2.....(i)
03

Step 3:Determination of the plot of the electric field

Plot the electric field defined in equation (i) as a function of ras follows:

As can be seen from the plot, the electric field falls of monotonically with distance.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If the total charge on a uniformly charged rod of length is 0.4 m is 2.2 nC, what is the magnitude of the electric field at a location 3 cm from the midpoint of the rod?

By thinking about the physical situation, predict the magnitude of the electric field at the center of a uniformly charged ring of radius R carrying a charge role="math" localid="1668494008173" +Q . Then use the equation derived in the text to confirm this result.

For a disk of radius R=20cm and Q=6×10-6C, calculate the electric field 2 mm from the center of the disk using all three equations:

role="math" localid="1656928965291" E=(Q/A)2ε0[1-z(R2+z)1/2]

EQ/A2e0[1-zR],andEQ/A2e0

How good are the approximate equations at this distance? For the same disk, calculate E at a distance of 5 cm (50 mm) using all three equations. How good are the approximate equations at this distance?

Consider a thin plastic rod bent into a semicircular arc of radius Rwith center at the origin (Figure 15.57). The rod carries a uniformly distributed negative charge -Q.

(a) Determine the electric field Eat the origin contributed by the rod. Include carefully labeled diagrams, and be sure to check your result. (b) An ion with charge -2eand mass is placed at rest at the origin. After a very short time tthe ion has moved only a very short distance but has acquired some momentum .PCalculate P.

A thin rod lies on the x axis with one end atand the other end at-A, as shown in Figure 15.51. A charge of-Q
is spread uniformly over the surface of the rod. We want to set up an integral to find the electric field at location <0,Y,0>due to the rod. Following the procedure discussed in this chapter, we have cut up the rod into small segments, each of which can be considered as a point charge. We have selected a typical piece, shown in red on the diagram

Answer using the variables x,y,dx,A,Qas appropriate. Remember that the rod has charge-Q. (a) In terms of the symbolic quantities given above and on the diagram, what is the charge per unit length of the rod? (b) What is the amount of chargedQon the small piece of lengthdx? (c) What is the vector from this source to the observation location? (d) What is the distance from this source to the observation location? (e) When we set up an integral to find the electric field at the observation location due to the entire rod, what will be the integration variable?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free