Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider setting up an integral to find an algebraic expression for the electric field of a uniformly charged rod of length L , at a location on the midplane. If we choose an origin at the center of the rod, what are the limits of integration?

Short Answer

Expert verified

The limits of the integration will be -L/2to+L/2.

Step by step solution

01

Given data

A uniformly charged rod of length L.

02

Step 2:Integration to find the electric field

The net electric field due to a uniform charge distribution is obtained by first calculating the electric field due to a small charge element in the distribution and then integrating it over the whole distribution.

03

Step 3:Determining the integration limit to find the electric field due to a uniformly charged rod on its midplane

To obtain the field due to the rod on its midplane, at first, the field due to a small length elementdx with a chargeλdx whereλis the charge per unit length is obtained. Here thexaxis is chosen along the rod with the mid-point at the origin.

Thus the integration to find the electric field due to the whole rod will be carried out fromrole="math" localid="1668498796461" -L/2 to +L/2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A large, thin plastic disk with radiusR = 1.5 m carries a uniformly distributed charge of −Q = −3 × 10−5 C as shown in Figure 15.59. A circular piece of aluminum foil is placed d = 3 mm from the disk, parallel to the disk. The foil has a radius of r = 2 cm and a thickness t = 1 mm.


(a) Show the charge distribution on the close-up of the foil. (b) Calculate the magnitude and direction of the electric field at location × at the center of the foil, inside the foil. (c) Calculate the magnitude q of the charge on the left circular face of the foil.

A plastic rod 1.7mlong is rubbed all over with wool, and acquires a charge of-2×10-8C(Figure 15.52). We choose the center of the rod to be the origin of our coordinate system, with the x axis extending to the right, the y axis extending up, and the z axis out of the page. In order to calculate the electric field at locationA=<07,0,0>, we divide the rod into eight pieces, and approximate each piece as a point charge located at the center of the piece.

(a) What is the length of one of these pieces? (b) What is the location of the center of piece number 3? (c) How much charge is on piece number? (Remember that the charge is negative.) (d) Approximating piece 3as a point charge, what is the electric field at location A due only to piece 3? (e) To get the net electric field at location A, we would need to calculatedue to each of the eight pieces, and add up these contributions. If we did that, which arrow (a–h) would best represent the direction of the net electric field at location A?

By thinking about the physical situation, predict the magnitude of the electric field at the center of a uniformly charged ring of radius R carrying a charge role="math" localid="1668494008173" +Q . Then use the equation derived in the text to confirm this result.

Question: A solid spherical plastic ball was rubbed with wool in such a way that it acquired a uniform negative charge all over the surface. Make a sketch showing the polarization of molecules inside the plastic ball, and explain briefly.

A solid metal ball of radius 1.5 cm bearing a charge of −17 nC is located near a solid plastic ball of radius 2 cm bearing a uniformly distributed charge of +7 nC (Figure 15.62) on its outer surface. The distance between the centers of the balls is 9 cm. (a) Show the approximate charge distribution in and on each ball. (b) What is the electric field at the center of the metal ball due only to the charges on the plastic ball? (c) What is the net electric field at the center of the metal ball? (d) What is the electric field at the center of the metal ball due only to the charges on the surface of the metal ball?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free