Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the total charge on a thin rod of length0.4mis 2.5n/C, what is the magnitude of the electric field at a location1Cmfrom the midpoint of the rod, perpendicular to the rod?

Short Answer

Expert verified

1.12×104N/C

Step by step solution

01

Identification of the given data

The given data is listed below as-

  • The length of the thin rod is,L=0.4m
  • The charge of the thin rod is,Q=2.5n/C
  • The location of the electric field is,X=1cm
02

Significance of the electric field

The electric field is a region in which a charged particle is able to exert force on another charged particle.

The concept of the electric field gives the magnitude of the electric field.

03

Determination of the magnitude of the electric field

The equation of the magnitude of the electric field is expressed as,

E=14πε0Qx2+L22x

Here,role="math" localid="1656051019749" 14πε0is the constant of electric field,Q is the charge of the thin rod, Xis the location of the electric field and is the length of the thin rod.

For,14πε0=8.99×109N.m2/C2, Q=2.5nC,x=1cmandL=0.4m

E=8.99×109N.m2/C2×2.5nC1cm2+0.4m221cm=8.99×109N.m2/C22.5nC×1×10-9C1nC1cm×1cm100cm1cm×1cm100cm2+0.4m22=8.99×109N.m2/C22.5×10-9C0.01m0.012+0.04m22=8.99×109N.m2/C2×2.5×10-9C2.002×10-3m2

.

Hence, further as,

E=8.99×109N.m2/C2×2.5×10-9C2.002×10-3m2=8.99×109N.m2/C2×1.24×10-8C/m2=11220.42N/C=1.12×104N/C

Thus, the magnitude of the electric field is 1.12×104N/C.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two rings of radius 5cmare 20cmapart and concentric with a common horizontal axis. The ring on the left carries a uniformly distributed charge of +35nC, and the ring on the right carries a uniformly distributed charge of -35nC. (a) What are the magnitude and direction of the electric field on the axis, halfway between the two rings? (b) If a charge of-5nCwere placed midway between the rings, what would be the magnitude and direction of the force exerted on this charge by the rings? (c) What are the magnitude and direction of the electric field midway between the rings if both rings carry a charge of +35nC?

When calculating the electric field of an object with electric charge distributed approximately uniformly over its surface, what is the order in which you should do the following operations? (1) Check the direction and units. (2) Write an expression for the electric field due to one point-like piece of the object. (3) Divide up the object into small pieces of a shape whose field is known. (4) Sum the vector contributions of all the pieces.

A thin rod lies on the x axis with one end atand the other end at-A, as shown in Figure 15.51. A charge of-Q
is spread uniformly over the surface of the rod. We want to set up an integral to find the electric field at location <0,Y,0>due to the rod. Following the procedure discussed in this chapter, we have cut up the rod into small segments, each of which can be considered as a point charge. We have selected a typical piece, shown in red on the diagram

Answer using the variables x,y,dx,A,Qas appropriate. Remember that the rod has charge-Q. (a) In terms of the symbolic quantities given above and on the diagram, what is the charge per unit length of the rod? (b) What is the amount of chargedQon the small piece of lengthdx? (c) What is the vector from this source to the observation location? (d) What is the distance from this source to the observation location? (e) When we set up an integral to find the electric field at the observation location due to the entire rod, what will be the integration variable?

A rod with uniformly distributed charge 2×10-8C is 50cm long. We need to calculate E at a distance of 1cm from the midpoint of the rod. Which equation for the electric field of a rod should we use? (1) Exact, (2) Approximate, (3) Either exact or approximate, (4) Neither—we have to do it numerically, (5) Neither—we need to integrate.

An electrostatic dust precipitator that is installed in a factory smokestack includes a straight metal wire of length L=0.8 mthat is charged approximately uniformly with a total charge Q=0.4×10-7C . A speck of coal dust (which is mostly carbon) is near the wire, far from both ends of the wire; the distance from the wire to the speck is d=1.5 cm . Carbon has an atomic mass of 12( 6protons and 6neutrons in the nucleus). A careful measurement of the polarizability of a carbon atom gives the value

=1.96×10-40C·mN/C

(a) Calculate the initial acceleration of the speck of coal dust, neglecting gravity. Explain your steps clearly. Your answer must be expressed in terms ofQ,L,d,and . You can use other quantities in your calculations, but your final result must not include them. Don’t put numbers into your calculation until the very end, but then show the numerical calculation that you carry out on your calculator. It is convenient to use the “binomial expansion” that you may have learned in calculus, that(1+ε)n1+is ε1. Note thatcan be negative. (b) If the speck of coal dust were initially twice as far from the charged wire, how much smaller would be the initial acceleration of the speck?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free