Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A student said, “The electric field inside a uniformly charged sphere is always zero.” Describe a situation where this is not true.

Short Answer

Expert verified

The field inside a uniformly charged sphere is not zero at all points except the center of the sphere.

Step by step solution

01

Identification of given data

A uniformly charged sphere.

02

Field due to a uniformly charged sphere

The electric field inside a uniformly charged sphere with charge Q and radius R at a distance r from the center is

E=Qr4πε0R3

Here, ε0 is the permittivity of free space
03

Determination of the case where the field inside a charged sphere is not zero

From equation (i), it is evident that the field inside a uniformly charged sphere is zero when

r=0

that is at the center of the sphere.

Thus, the field is not zero at all points except the center of the sphere.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solid metal ball of radius 1.5 cm bearing a charge of −17 nC is located near a solid plastic ball of radius 2 cm bearing a uniformly distributed charge of +7 nC (Figure 15.62) on its outer surface. The distance between the centers of the balls is 9 cm. (a) Show the approximate charge distribution in and on each ball. (b) What is the electric field at the center of the metal ball due only to the charges on the plastic ball? (c) What is the net electric field at the center of the metal ball? (d) What is the electric field at the center of the metal ball due only to the charges on the surface of the metal ball?

Consider a thin plastic rod bent into a semicircular arc of radius Rwith center at the origin (Figure 15.57). The rod carries a uniformly distributed negative charge -Q.

(a) Determine the electric field Eat the origin contributed by the rod. Include carefully labeled diagrams, and be sure to check your result. (b) An ion with charge -2eand mass is placed at rest at the origin. After a very short time tthe ion has moved only a very short distance but has acquired some momentum .PCalculate P.

For a disk of radius R=20cm and Q=6×10-6C, calculate the electric field 2 mm from the center of the disk using all three equations:

role="math" localid="1656928965291" E=(Q/A)2ε0[1-z(R2+z)1/2]

EQ/A2e0[1-zR],andEQ/A2e0

How good are the approximate equations at this distance? For the same disk, calculate E at a distance of 5 cm (50 mm) using all three equations. How good are the approximate equations at this distance?

Explain briefly how knowing the electric field of a ring helps in calculating the field of a disk.

What is wrong with Figure 15.35 and this associated incorrect student explanation? “The electric field at location inside the uniformly charged sphere points in the direction shown, because the charges closest to this location have the largest effect.” (Spheres provide the most common exception to the normally useful rule that the nearest charges usually make the largest contribution to the electric field.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free