Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The drift speed in a copper wire is 7×10-5msfor a typical electron current. Calculate the magnitude of the electric field inside the copper wire. The mobility of mobile electrons in copper is 4.5×10-3ms/NC. (Note that though the electric field in the wire is very small, it is adequate to push a sizable electron current through the copper wire.)

Short Answer

Expert verified

The magnitude of the electric field inside the copper wire is 1.556×10-8NC.

Step by step solution

01

Given information

The drift speed of electron current in a copper wire is,vd=7×10-5ms.

The mobility of mobile electrons in copper is, Mobility=4.5×10-3msNC.

02

Determine the Drift speed of electrons

Consider a current is supplied to a conducting material then the current travels in form of free electrons. The speed of free electrons inside a conducting material is described as the drift speed of electrons.

The drift speed of the electrons inside a conducting material relies upon the mobility of the free electrons and the electric field in the conducting material

03

Determine the magnitude of the electric field

The formula for the mobility of mobile electrons in copper is as follows:

Mobility=vdEE=vdMobility

Substitute the values and solve as:

E=7×10-5ms4.5×10-3msNCE=1.556×10-8NC

Hence, the magnitude of the electric field inside the copper wire is1.556×10-8NC1.556×10-8NC.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:In figure 18.102 suppose that VC-VF=8 V and VD-VE=4.5 V.

(a) What is the potential difference VC-VD?

(b) If the element between the battery C and D is a battery, is the + end of the battery at C or D?

Why does the brightness of a bulb not change noticeably when you use longer copper wires to connect it to the battery? (1) Very little energy is dissipated in the thick connecting wires. (2) The electric field in connecting wires is very small, so emfEbulbLbulb. (3) Electric field in the connecting wires is zero, so emfEbulbLbulb. (4) Current in the connecting wires is smaller than current in the bulb. (5) All the current is used up in the bulb, so the connecting wires don’t matter.

Suppose that a wire leads into another, thinner wire of the same material that has only half the cross-sectional area. In the steady state, the number of electrons per second flowing through the thick wire must be equal to the number of electrons per second flowing through the thin wire. If the electric field \({E_1}\) in the thick wire is \(1 \times 1{0^{ - 2}}\;N/C\), what is the electric field \({E_2}\) in the thinner wire?

A Nichrome wire 30 cm long and 0.25 mm in diameter is connected to a 1.5 V flashlight battery. What is the electric field inside the wire? Why you don’t have to know how the wire is bent? How would your answer change if the wire diameter change were 0.35 mm? (Not that the electric field in the wire is quiet small compared to the electric field near a charged tape.)

Suppose that wire A and wire B are made of different metals and are subjected to the same electric field in two different circuits. Wire B has the 6 times the cross sectional area, 1.3 times as many mobile electrons per cubic centimetre and 4 times the mobility of wire A. In the steady state \({\bf{2 \times 1}}{{\bf{0}}^{{\bf{18}}}}\) electrons enters wire A every second. How many electrons enter wire B every second?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free