Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A steady-state current flows through the Nichrome wire in the circuit shown in Figure 18.90. Before attempting to answer the following questions, draw a copy of this diagram. All of the locations indicated by letters are inside the wire.

(a)On your diagram, show the electric field at the locations indicated, paying attention to relative magnitude.

(b)Carefully draw pluses and minuses on your diagram to show the approximate surface charge distribution that produces the electric field you drew. Make your drawing show clearly the differences between regions of high surface charge density and regions of low surface-charge density. Use your diagram to determine which of the following statements about this circuit are true.

(1) There is some excess negative charge on the surface of the wire near location B.

(2) Inside the metal wire the magnitude of the electric field is zero.

(3) The magnitude of the electric field is the same at locations Gand C.

(4) The electric field points to the left at location G.

(5) There is no excess charge on the surface of the wire.

(6) There is excess charge on the surface of the wire near the batteries but nowhere else.

(7) The magnitude of the electric field inside the wire is larger at location Gthan at location C.

(8) The electric field at location Dpoints to the left.

(9) Because the current is not changing, the circuit is in static equilibrium.

Short Answer

Expert verified

(a) The direction of electric field in the circuit is as follows:

Step by step solution

01

Given data

A steady-state current flows through the Nichrome wire in the circuit.

The following statements are provided:

(1) There is some excess negative charge on the surface of the wire near location B.

(2) Inside the metal wire the magnitude of the electric field is zero.

(3) The magnitude of the electric field is the same at locations Gand C.

(4) The electric field points to the left at location G.

(5) There is no excess charge on the surface of the wire.

(6) There is excess charge on the surface of the wire near the batteries but nowhere else.

(7) The magnitude of the electric field inside the wire is larger at location Gthan at location C.

(8) The electric field at location Dpoints to the left.

(9) Because the current is not changing, the circuit is in static equilibrium.

02

Electric field direction

Electric field always points from the positive terminal to the negative terminal of a battery.

03

(a) Determination of electric field in the circuit

At steady state, the electric field is uniform everywhere and is directed from the positive to the negative terminal. This is depicted in the following diagram:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Some students intended to run a light bulb off two batteries in series in the usual way, but they accidentally hooked up one of the batteries backwards, as shown in Figure 18.89 (the bulb is shown as a thin filament).

(a)Use+โ€™s and -โ€™s to show the approximate steady-state charge distribution along the wires and bulb.

(b)Draw vectors for the electric field at the indicated locations inside the connecting wires and bulb.

(c)Compare the brightness of the bulb in this circuit with the brightness the bulb would have had if one of the batteries hadnโ€™t been put in backwards.

(d)Try the experiment to check your analysis. Does the bulb glow about as you predicted?

When a single thick-filament bulb of a particular kind and two batteries are connected in series, 3ร—1018 electrons pass through the bulb every second. When two batteries in series are connected to a single thin-filament bulb, with a filament made of the same material and length as the thick-filament bulb but a smaller cross-section, only 1.5ร—1018 electrons pass through the bulb every second. (a) In the circuit shown in Figure 18.109, how many electrons per second flow through the thin-filament bulb? (b) What approximations or simplifying assumptions did you make? (c) Show approximately the surface charge on a diagram of the circuit.

Suppose that a wire leads into another, thinner wire of the same material that has only half the cross-sectional area. In the steady state, the number of electrons per second flowing through the thick wire must be equal to the number of electrons per second flowing through the thin wire. If the electric field \({E_1}\) in the thick wire is \(1 \times 1{0^{ - 2}}\;N/C\), what is the electric field \({E_2}\) in the thinner wire?

There are very roughly the same number of iron atoms per m3 as there are copper atoms per m3 , but copper is a much better conductor than iron. How does uiron compare with ucopper?

Question: The following questions refer to the circuit shown in Figure 18.114, consisting of two flashlight batteries and two Nichrome wires of different lengths and different thicknesses as shown (corresponding roughly to your own thick and thin Nichrome wires).

The thin wire is 50 cm long, and its diameter is 0.25 mm. The thick wire is 15 cm long, and its diameter is 0.35 mm. (a) The emf of each flashlight battery is 1.5 V. Determine the steady-state electric field inside each Nichrome wire. Remember that in the steady state you must satisfy both the current node rule and energy conservation. These two principles give you two equations for the two unknown fields. (b) The electron mobility

in room-temperature Nichrome is about . Show that it takes an electron 36 min to drift through the two Nichrome wires from location B to location A. (c) On the other hand, about how long did it take to establish the steady state when the circuit was first assembled? Give a very approximate numerical answer, not a precise one. (d) There are about mobile electrons per cubic meter in Nichrome. How many electrons cross the junction between the two wires every second?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free