Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the difference between emf and electric potential difference?

Short Answer

Expert verified

Emf is the total energy provided to each mobile charge by the battery and potential energy is the energy lost by the charges while moving through a particular section of the circuit.

Step by step solution

01

Given data

Emf and electric potential difference in a circuit.

02

Definition of emf

Emf or electromotive force is a measure of the amount of energy provided to every mobile charge in a circuit by the battery.

03

Determine the difference between emf and potential difference

Emf is the potential energy provided in volts to every mobile charge in the circuit by the battery. It is fixed for a particular battery and doesn't change with resistance. Potential difference between two locations in a circuit is the energy lost in volts by the mobile charges while moving from one location to the other. The value of potential difference increases with resistance between the two locations.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit shown in Figure 18.91, all of the wire is made of Nichrome, but one segment has a much smaller cross-sectional area. On a copy of this diagram, using the same scale for magnitude that you used in the previous question for Figure 18.90, show the steady-state electric field at the locations indicated, including in the thinner segment. Before attempting to answer these questions, draw a copy of this diagram. All of the locations indicated by letters are inside the wire.

(a)On your diagram, show the electric field at the locations indicated, paying attention to relative magnitude. Use the same scale for magnitude as you did in the previous question.

(b)Carefully draw pluses and minuses on your diagram to show the approximate surface charge distribution that produces the electric field you drew. Make your drawing show clearly the differences between regions of high surface charge density and regions of low surface-charge density. Use your diagram to determine which of the following statements about this circuit are true.

(1) There is a large gradient of surface charge on the wire between locations Cand E. (2) The electron current is the same at every location in this circuit.

(3) Fewer electrons per second pass location Ethan location C.

(4) The magnitude of the electric field at location Gis smaller in this circuit than it

was in the previous circuit (Figure 18.90).

(5) The magnitude of the electric field is the same at every location in this circuit.

(6) The magnitude of the electric field at location D is larger than the magnitude of the electric field at location G.

(7) There is no surface charge at all on the wire near location G.

(8) The electron current in this circuit is less than the electron current in the previous circuit (Figure 18.90).

At a typical drift speed of 5ร—10-5m/s, an electron traveling at that speed would take about to travel through one of your connecting wires. Why, then, does the bulb light immediately when the connecting wire is attached to the battery?

Question: Some students intended to run a light bulb off two batteries in series in the usual way, but they accidentally hooked up one of the batteries backwards, as shown in Figure 18.89 (the bulb is shown as a thin filament).

(a)Use+โ€™s and -โ€™s to show the approximate steady-state charge distribution along the wires and bulb.

(b)Draw vectors for the electric field at the indicated locations inside the connecting wires and bulb.

(c)Compare the brightness of the bulb in this circuit with the brightness the bulb would have had if one of the batteries hadnโ€™t been put in backwards.

(d)Try the experiment to check your analysis. Does the bulb glow about as you predicted?

The emf of a particular flashlight battery is 1.7 V. If the battery is 4.5 cm long and radius of cylindrical battery is 1 cm, estimate roughly the amount of charge on the positive end plate of the battery.

In the circuit shown in Figure 18.87, bulbs 1 and 2 are identical in mechanical construction (the filaments have the same length and the same cross-sectional area), but the filaments are made of different metals. The electron mobility in the metal used in bulb 2 is three times as large as the electron mobility in the metal used in bulb 1, but both metals have the same number of mobile electrons per cubic meter. The two bulbs are connected in series to two batteries with thick copper wires (like your connecting wires).

(a)In bulb 1, the electron current is i1and the electric field is E1. In terms of these quantities, determine the corresponding quantities i2and E2for bulb 2, and explain your reasoning.

(b)When bulb 2 is replaced by a wire, the electron current through bulb 1 is i0and the electric field in bulb 1 is E0. How big is i1 in terms of i0? Explain your answer, including explicit mention of any approximations you must make. Do not use ohms or series-resistance equations in your explanation, unless you can show in detail how these concepts follow from the microscopic analysis introduced in this chapter.

(c)Explain why the electric field inside the thick copper wires is very small. Also explain why this very small electric field is the same in all of the copper wires, if they all have the same cross-sectional area.

(d)Figure 18.88 is a graph of the magnitude of the electric field at each location around the circuit when bulb 2 is replaced by a wire. Copy this graph and add to it, on the same scale, a graph of the magnitude of the electric field at each location around the circuit when both bulbs are in the circuit. The very small field in the copper wires has been shown much larger than it really is in order to give you room to show how that small field differs in the two circuits.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free