Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A block with mass 0.4 kgis connected by a spring of relaxed length 0.15 mto a post at the centre of a low-friction table. You pull the block straight away from the post and release it, and you observe that the period of oscillation is 0.6 s. Next you stretch the spring to a length of 0.28mand give the block an initial speed vperpendicular to the spring, choosing vso that the motion is a circle with the post at the centre. What is this speed?

Short Answer

Expert verified

The speed is .2.0 m/s

Step by step solution

01

Given data

A block with mass m = 0.4 kg is connected by a spring of relaxed length l0=0.15m to a post at the centre of a low-friction table and the stretch length l = 0.28 m

02

Definition of speed

The magnitude of an object's rate of change of position with time, or the magnitude of change of position per unit of time, is its speed; it is thus a scalar quantity.

03

Find the speed

Apply the concept of T for a spring mass system, first describe the spring constant in terms of the period T and the mass m.

T=2πmkk=m2πT2=4π2mT2

Continue writing Newton's second law for the mass along the direction of the spring while it is in circular motion.

Then replace k for the equation derived in the previous step.

The centripetal acceleration has been defined in terms of the tangential speed v and the stretched length l.

It's also worth noting that the stretch equals stretch length minus the relaxed length.

Finally, in this equation, solve for.

F=ks=mac4π2mT2s=macac=v2l4π2m(l-lo)T2=mv2lv=2πTl(l-lo)=2π0.6s(0.28m)(0.28m-0.15m)=2.0m/sTherefore,thespeedis2.0m/s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A sports car (and its occupants) of massis moving over the rounded top of a hill of radius RAt the instant when the car is at the very top of the hill, the car has a speed v. You can safely neglect air resistance.

(a) Taking the sports car as the system of interest, what object(s) exert non negligible forces on this system?

(b) At the instant when the car is at the very top of the hill, draw a diagram showing the system as a dot, with force vectors whose tails are at the location of the dot. Label the force vectors (that is, give them algebraic names). Try to make the lengths of the force vectors be proportional to the magnitudes of the forces.

(c) Starting from the Momentum Principle calculates the force exerted by the road on the car.

(d) Under what conditions will the force exerted by the road on the car be zero? Explain.

You pull with a force of255 N on a rope that is attached to a block of mass 30 kg, and the block slides across the floor at a constant speed of 1.1 m/s. The rope makes an angle θ=40with the horizontal. Both the force and the velocity of the block are in the xyplane.

(a) Express the tension force exerted by the rope on the block as a vector.

(b) Express the force exerted by the floor on the block as a vector.

What is the minimum speedthat a roller coaster car must have in order to make it around an inside loop and just barely lose contact with the track at the top of the loop (see Figure 5.76)? The centre of the car moves along a circular arc of radius. Include a carefully labelled force diagram. State briefly what approximations you make. Design a plausible roller coaster loop, including numerical values for vand R.

An engineer whose mass is 70kg holds onto the outer rim of a rotating space station whose radius is14mand which takes30s to make one complete rotation. What is the magnitude of the force the engineer has to exert in order to hold on? What is the magnitude of the net force acting on the engineer?

If the radius of a merry-go-round is5m, and it takes14sto go around once, what is the speed of an atom at the outer rim? What is the direction of the velocity of this atom: toward the center, away from the center, or tangential?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free