Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In June 1997 the NEAR spacecraft ("Near Earth Asteroid Rendezvous"; see https//near.jhuapl.edu/), on its way to photograph the asteroid Eros, passed near the asteroid Mathilde. After passing Mathilde, on several occasions rocket propellant was expelled to adjust the spacecraft's momentum in order to follow a path that would approach the asteroid Eros, the final destination for the mission. After getting close to Eros, further small adjustments made the momentum just right to give a circular orbit of radius 45km(45×103m)around the asteroid. So much propellant had been used that the final mass of the spacecraft while in circular orbit around Eros was only 500kg. The spacecraft took 1.04days to make one complete circular orbit around Eros. Calculate what the mass of Eros must be.

Short Answer

Expert verified

The mass of the Eros is 6.67×1015kg.

Step by step solution

01

Given data

A circular orbit of radius R=45km45×103m

The final mass of the spacecraft while in circular orbit 500 kg

The spacecraft took t=1.04days to make one complete circular orbit around Eros.

02

Definition of force

A force is a push or pull on an object is because of the interaction of the thing with another object. Every time two things interact, a force is exerted on each of them .The acted force may be of attraction or of repulsion .The two items no longer feel the force after the interaction ends

03

Find the mass of Eros

The net force on an object is equal to the rate of change of momentum and can be written as the sum of two components.

The parallel rate of change of momentumdpdtand the perpendicular rate of change of momentumdpdtare the two elements that we are concerned with.

So, the net forceFneton the object is given by

Fnet=dpdt=dpdt+dpdt

The rock's speed is affected by the parallel rate of change of momentum and given the speed is constant, therefore, the parallel rate is zero, and it equals the size of the momentum rate change.

dpdt=0

The centrifugal forceequals the rate change, which is the change in direction owing to the perpendicular rate of change.

At speeds significantly slower than the speed of light, the magnitude of the perpendicular rate change is given by

Fc=dpdt=mv2R

The change in distance over time is the speed.

So, it is given by

v=dt

The engineer goes above the diameter of a circle as he travels through one cycle.

The circumference is given by2πR

WhereRis the radius of the circle.

So, the distance where the engineer travel is

d=2πR

Therefore,

v=2πRt

The mass of the Eros,

role="math" localid="1656913473442" vearth=vasteroidGMER=2πRtGMER=2πRt2ME=2πRt2RG

Now put the values forR,role="math" localid="1656913521563" tandGto getMEwheretis the time taken to complete one round by the spacecraft.

t=1.04days24h/day3600s/h=89.85×103sME=2πRt2RG=2π×45×103m89.85×103s245×103m6.67×10-11N·m2/kg2=6.67×1015kg

Therefore, the mass of the Eros is 6.67×1015kg.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You're driving a vehicle of mass 1350kgand you need to make a turn on a flat road. The radius of curvature of the turn is. The coefficient of static friction and the coefficient of kinetic friction are both 0.25.

(a) What is the fastest speed you can drive and still make it around the turn? Invent symbols for the various quantities and solve algebraically before plugging in numbers.

(b) Which of the following statements are true about this situation?

(1) The net force is nonzero and points away from the centre of the kissing circle. (2) The rate of change of the momentum is nonzero and points away from the centre of the kissing circle.

(3) The rate of change of the momentum is nonzero and points toward the centre of the kissing circle.

(4) The momentum points toward the centre of the kissing circle.

(5) The centrifugal force balances the force of the road, so the net force is zero. (6) The net force is nonzero and points two and the centre of the kissing circle.

(c) Look at your algebraic analysis and answer the following question. Suppose that your vehicle had a mass five times as big(6750kg). Now what is the fastest speed you can drive and still make it around the turn?

(d) Look at your algebraic analysis and answer the following question. Suppose that you have the originalvehicle but the turn has a radius twice as large (152 m). What is the fastest speed you can drive and still make it around the turn? This problem shows why high-speed curves on freeways have very large radii of curvature, but low-speed entrance and exit ramps can have smaller radii of curvature.

What is the minimum speedthat a roller coaster car must have in order to make it around an inside loop and just barely lose contact with the track at the top of the loop (see Figure 5.76)? The centre of the car moves along a circular arc of radius. Include a carefully labelled force diagram. State briefly what approximations you make. Design a plausible roller coaster loop, including numerical values for vand R.

A child rides on a playground merry-go-round, from the center. The merry-go-round makes one complete revolution every 5 s. How large is the net force on the child? In what direction does the net force act?

A child of mass 35kgsits on a wooden horse on a carousel. The wooden horse is 3.3mfrom the center of the carousel, which rotates at a constant rate and completes one revolution every 5.2s.

(a) What are the magnitude and direction (tangential in direction of velocity, tangential in the opposite direction of the velocity, radial outward, radial inward) of (dp/dt)p, the parallel component of dp/dtfor the child?

(b) What are the magnitude and direction of \p\dp/dt. the perpendicular component of dp/dtfor the child?

(c) What are the magnitude and direction of the met force acting on the child? (d) What objects in the surroundings contribute to this horizontal net force acting on the child? (There are also vertical forces, but these cancel each other if the horse doesn't move up and down.)

A child of mass 40kgsits on a wooden horse on a carousel. The wooden horse is 5mfrom the center of the carousel, which completes one revolution every 90s. What is(dp/dt)pfor the child, both magnitude and direction? What is|p|(dp/dt)for the child? What is the net force acting on the child? What objects in the surroundings exert this force?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free