Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An engineer whose mass is 70kgholds onto the outer rim of a rotating space station whose radius is 14mand which takes 30sto make one complete rotation. What is the magnitude of the force the engineer has to exert in order to hold on? What is the magnitude of the net force acting on the engineer?

Short Answer

Expert verified

The magnitude of the force the engineer has to exert in order to hold on is 43.21Nand the magnitude of the net force acting on the engineer is 43.21N.

Step by step solution

01

Given data

An engineer whose mass is m=70kgholds onto the outer rim of a rotating space station whose radius is R=14mand which takes t=30s to make one complete rotation.

02

Definition of force

A force is a push or pull on an object is because of the interaction of the thing with another object. Every time two things interact, a force is exerted on each of them .The acted force may be of attraction or of repulsion .The two items no longer feel the force after the interaction ends

03

Find the magnitude of the force the engineer has to exert in order to hold on and the magnitude of the net force acting on the engineer.

The net force on an object is equal to the rate of change of momentum and can be written as the sum of two components.

The parallel rate of change of momentumdpdtand the perpendicular rate of change of momentumdpdtare the two elements that we are concerned with.

So, the net forceFneton the object is given by

Fnet=dpdt=dpdt+dpdt

The rock's speed is affected by the parallel rate of change of momentum and given the speed is constant, therefore, the parallel rate is zero, and it equals the size of the momentum rate change.

dpdt=0

The centrifugal force Fcequals the rate change, which is the change in direction owing to the perpendicular rate of change.

At speeds significantly slower than the speed of light, the magnitude of the perpendicular rate change is given by

Fc=dpdt=mv2R

The change in distance over time is the speed.

So, it is given by

v=dt

The engineer goes above the diameter of a circle as he travels through one cycle.

The circumference is given by

role="math" localid="1656911269271" 2πR

Whereis the radius of the circle.

So, the distance where the engineer travel is

d=2πR

Therefore,

v=2πRt

Now put the values forandto get the speed of the engineer

v=2πRt=2π14m30s=2.94m/s

Now put the values for m, vand Rto getFc

Fc=mv2R=70kg2.49m/s214m=43.21N

The magnitude of the force the engineer has to exert in order to hold on is43.21N.

At speeds far slower than the speed of light, the net force applied on the object equals the rate change of momentum and the magnitude of the perpendicular rate change, which is the centrifugal forceFc.

Fnet=Fc=dpdt=43.21N

Thus, the magnitude of the net force acting on the engineer is 43.21N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A child of mass 26kg swings at the end of an elastic cord. At the bottom of the swing, the child's velocity is horizontal, and the speed is 12m/sAt this instant the cord is 4.30mlong.

(a) At this instant, what is the parallel component of the rate of change of the child's momentum?

(b) At this instant, what is the perpendicular component of the rate of change of the child's momentum?

(c) At this instant, what is the net force acting on the child?

(d) What is the magnitude of the force that the elastic cord exerts on the child? (It helps to draw a diagram of the forces.)

(e) The relaxed length of the elastic cord is 4.22m. What is the stiffness of the cord?

(a) Many communication satellites are placed in a circular orbit around the Earth at a radius where the period (the time to go around the Earth once) is\(24\;{\rm{h}}\). If the satellite is above some point on the equator, it stays above that point as the Earth rotates, so that as viewed from the rotating Earth the satellite appears to be motionless. That is why you see dish antennas pointing at a fixed point in space. Calculate the radius of the orbit of such a "synchronous" satellite. Explain your calculation in detail.

(b) Electromagnetic radiation including light and radio waves travels at a speed of\(3 \times {10^8}\;{\rm{m}}/{\rm{s}}\). If a phone call is routed through a synchronous satellite to someone not very far from you on the ground, what is the minimum delay between saying something and getting a response? Explain. Include in your explanation a diagram of the situation.

(c) Some human-made satellites are placed in "near-Earth" orbit, just high enough to be above almost all of the atmosphere. Calculate how long it takes for such a satellite to go around the Earth once, and explain any approximations you make.

(d) Calculate the orbital speed for a near-Earth orbit, which must be provided by the launch rocket. (The advantages of near-Earth communications satellites include making the signal delay unnoticeable, but with the disadvantage of having to track the satellites actively and having to use many satellites to ensure that at least one is always visible over a particular region.)

(e) When the first two astronauts landed on the Moon, a third astronaut remained in an orbiter in circular orbit near the Moon's surface. During half of every complete orbit, the orbiter was behind the Moon and out of radio contact with the Earth. On each orbit, how long was the time when radio contact was lost?

Question: Tarzan swings back and forth on a vine. At the microscopic level, why is the tension force on Tarzan by the vine greater than it would be if he were hanging motionless?

An engineer whose mass is 70kg holds onto the outer rim of a rotating space station whose radius is14mand which takes30s to make one complete rotation. What is the magnitude of the force the engineer has to exert in order to hold on? What is the magnitude of the net force acting on the engineer?

You swing a bucket full of water in a vertical circle at the end of a rope. The mass of the bucket plus the water is 3.5kg.The center of mass of the bucket plus the water moves in a circle of radius. At the instant that the bucket is at the top of the circle, the speed of the bucket is 4 m/s. What is the tension in the rope at this instant?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free