Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In outer space two identical spheres are connected by a taut steel cable, and the whole apparatus rotates about its centre. The mass of each sphere is 60kg. The distance between centres of the spheres is3.2m. At a particular instant the velocity of one of the spheres is(0.5,0)m/s and the velocity of the other sphere is 0,-5,0m/s. What is the tension in the cable?

Short Answer

Expert verified

The tension in the cable is 937.5N.

Step by step solution

01

Identification of given data

The mass of each sphere ism=60kg.

The distance between centres of the spheres isd=3.2m.

At a particular instant, the velocity of one of the spheres is0.5.0m/s

The velocity of the other sphere is 0,-5,0m/s.

02

Definition of force

A force is a push or pull on an object because of the interaction of the thing with another object. Every time two things interact, a force is exerted on each of them. The acted force may be of attraction or of repulsion. The two items no longer feel the force after the interaction ends.

03

Determining the tension in the rope at this instant

The net force on an object is equal to the rate of change of momentum and can be written as the sum of two components.

The parallel rate of change of momentumdpdt||and the perpendicular rate of change of momentumdpdtare the two elements that we are concerned with.

Fnet=dpdt=dpdt||+dpdt

In this case, the force acting on the object is in +yor-ydirection, therefore, there is no parallel force and equals zero.

dpdt||=0

As a result, the rate change is the direction change owing to the perpendicular rate of change.

The net force exerted on the object equals the rate change of the momentum and the magnitude of the perpendicular rate change at speeds much less than the speed of light is given by

Fnet=dpdt=mv2R

Also, the object is under two forces, the tension forceFTof the string and its weight mg, so the net force of both forces is:

Fnet=FT+mg

In the outer space, the weight force is neglected, so the above equation will be in the form:

Fnet=FT

Therefore,

FT=mv2R

Both spheres have the same magnitude of the velocity where the magnitude of speed for each sphere was calculated by

v1=02+52+02=5m/s

And

v2=02+(-5)2+02=5m/s

Hence,v1=v2=v=5m/s.

Where,

R=d2=3.2m2=1.6m

Now, put the values for m,v,g,andR to get the tension force in the cable

FT=mv2R=(60kg)(5m/s)21.6m=937.5N

Thus, the tension in the cable is 937.5N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

There is no general analytical solution for the motion of a three-body gravitational system. However, there do exist analytical solutions for very special initial conditions. Figure shows three stars, each of mass m. which move in the plane of the page along a circle of radius r. Calculate how long this system takes to make one complete revolution. (In many cases three-body orbits are not stable: any slight perturbation leads to a breakup of the orbit.)

When a particle with electric charge q moves with speed v in a plane perpendicular to a magnetic field B ,there is a magnetic force at right angles to the motion with magnetic qvB ,and the particle moves n a circle of radius r (see Figure 5.77). This equation for the magnetic force is correct even if the speed is comparable to the speed of light. Show that

p=mv1-(|v|/c)2=qBreven if is comparable to c.

This result is used to measure relativistic momentum: if the charge q is known, we can determine the momentum of a particle by observing the radius of a circular trajectory in a known magnetic field.

A proton moving in a magnetic field follows the curving path shown in Figure. The dashed circle is the kissing circle tangent to the path when the proton is at location A. The proton is traveling at a constant speed of 7.0 x 105 m/s, and the radius of the kissing circle is 0.08m . The mass of a proton is 1.7 x 10-27kg . Refer to the directional arrows shown at the right in Figure when answering the questions below.

(a) When the proton is at location A, what are the magnitude and direction of (dp/dt)p^ , the parallel component of (dp/dt)?

(b) When the proton is at location A, what are the magnitude and direction of |p|p^/dl , the perpendicular component of(dp/dt) ?

Question: A student said, "When the Moon goes around the Earth, there is an inward force due to the Moon and an outward force due to centrifugal force, so the net force on the Moon is zero." Give two or more physics reasons why this is wrong.

An object is moving with constant momentum {10,-12,-8}Kg×m/s. What is the rate of change of momentumdp/dt? What is the net force acting on the object? The object is acted on by three objects in the surroundings. Two of the forces are {100,50,-60N}and {-130,40,-70}N. What is the third force?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free