Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An object moving at a constant speed of 23m/sis making a turn with a radius of curvature of 4m(this is the radius of the kissing circle). The object's momentum has a magnitude of . What is the magnitude of the rate of change of the momentum? What is the magnitude of the net force?

Short Answer

Expert verified

The magnitude of rate of change of momentum is448.5kg-m/s2, and magnitudeofrateofthenetforceis448.5kg-m/s2

Step by step solution

01

Given data

An object moving at a constant speed ofv=23m/s is making a turn with a radius of curvature of r=4m (this is the radius of the kissing circle). The object's momentum has a magnitude of p=78kg-m/s.

02

The concept and the formula used

In Newtonian mechanics, linear momentum, translational momentum, or simply momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction|p|=mv

03

Calculate the value using the formula

From the definition of momentum P.

m=pv=78kg-m/s23m/s=3.39kgdpdt=F=mv2r=3.38kg×232m2/s24m=448.5Kg.m/s2

From Newton’s second law, the rate of change of momentum equals the net force. The radial force equals times the radial acceleration which is given by .

Therefore, The magnitude of rate of change of momentum is448.5Kg.m/s2, and 448.5Kg.m/s2is .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A planet orbits a star in an elliptical orbit. At a particular instant the momentum of the planet is (-2.6×1029,-1.0×1029,0)kg.m/s, and the force on the planet by the star is (-2.5×1022,-1.4×1023,0)N. Find Fand F.

What is the minimum speed νthat a roller coaster car must have in order to make it around an inside loop and just barely lose contact with the track at the top of the loop (see Figure 5.76)? The centre of the car moves along a circular arc of radius. Include a carefully labelled force diagram. State briefly what approximations you make. Design a plausible roller coaster loop, including numerical values for ν andR.

A small block of mass m is attached to a spring with stiffness ks and relaxed lengthL. The other end of the spring is fastened to a fixed point on a low-friction table. The block slides on the table in a circular path of radiusR>L. How long does it take for the block to go around once?

A Ferris wheel is a vertical, circular amusement ride. Riders sit on seats that swivel to remain horizontal as the wheel turns. The wheel has a radius R and rotates at a constant rate, going around once in a timeT. At the bottom of the ride, what are the magnitude and direction of the force exerted by the seat on a rider of mass m? Include a diagram of the forces on the rider.

A Ferris wheel is a vertical, circular amusement ride. Riders sit on seats that swivel to remain horizontal as the wheel turns. The wheel has a radiusand rotates at a constant rate, going around once in a timeT. At the bottom of the ride, what are the magnitude and direction of the force exerted by the seat on a rider of mass m? Include a diagram of the forces on the rider.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free