Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In each of the following cases identify all objects in the surroundings that exert forces on the system, and draw a free-body diagram for the system. Assume that air resistance is negligible. (a) You hit a baseball with a bat. Choose the baseball as the system, and consider the instant of contact with the bat. (b) You are playing with a yo-yo. Choose the yo-yo as the system. As the yo-yo moves downward, you pull up on the string.

Short Answer

Expert verified

(a) The free body diagram of the baseball as a system has been drawn below.

(b) The free body diagram of the yo-yo as a system has been drawn below.

Step by step solution

01

Identification of the given data 

The given data is listed below,

The air resistance is negligible.

02

Significance of Newton’s first law for the objects

This law states that a body will continue to move in a straight line in a uniform motion if no external force acts on that body.

Newton’s first law helps in identifying the forces in the free body diagram of the baseball-bat system and the yo-yo system.

03

Determination of the free body diagram when baseball is considered a system

(a)

The forces that will act on the baseball if it is considered as the system are force due to the hitting of the bat and the force due to gravity.

The free-body diagram of the baseball and the bat is drawn below,

Here, Fbatis the force exerted by the bat on the baseball and Fgis the force due to the gravity.

(b) Determination of the free body diagram when the yo-yo is considered a system

The forces that will act on the baseball if it is considered as the system are force applied for pulling the yo-yo and the force due to gravity.

The free-body diagram of the yo-yo as a system has been drawn below-

Here, Fsis the force needed to pull up the yo-yo and Fgis force acting downwards due to the acceleration due to gravity.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A Ferris wheel is a vertical, circular amusement ride. Riders sit on seats that swivel to remain horizontal as the wheel turns. The wheel has a radius R and rotates at a constant rate, going around once in a timeT. At the bottom of the ride, what are the magnitude and direction of the force exerted by the seat on a rider of mass m? Include a diagram of the forces on the rider.

In June 1997 the NEAR spacecraft , on its way to photograph the asteroid Eros, passed near the asteroid Mathilde. After passing Mathilde, on several occasions rocket propellant was expelled to adjust the spacecraft's momentum in order to follow a path that would approach the asteroid Eros, the final destination for the mission. After getting close to Eros, further small adjustments made the momentum just right to give a circular orbit of radius around the asteroid. So much propellant had been used that the final mass of the spacecraft while in circular orbit 45km(45×103m)around Eros was only . The spacecraft took 1.04days to make one complete circular orbit around Eros. Calculate what the mass of Eros must be.

Question: A student said, "When the Moon goes around the Earth, there is an inward force due to the Moon and an outward force due to centrifugal force, so the net force on the Moon is zero." Give two or more physics reasons why this is wrong.

A particle moving at nearly the speed of light (vc) passes through a region where it is subjected to a magnetic force of constant magnitude that is always perpendicular to the momentum and has a magnitude of 2×10-10N. As a result, the particle moves along a circular arc with a radius of 8m. What is the magnitude of the momentum of this particle?

An engineer whose mass is 70kg holds onto the outer rim of a rotating space station whose radius is14mand which takes30s to make one complete rotation. What is the magnitude of the force the engineer has to exert in order to hold on? What is the magnitude of the net force acting on the engineer?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free