Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If in a certain material whose atoms are in a cubic array the interatomic distance is 1.7×10-10mand the mass of one atom is 8.26×10-26kg, what be the density of this material?

Short Answer

Expert verified

The density of the material is 1.7×104kg/m3.

Step by step solution

01

Identification of given data

The given data is listed as follows,

  • Interatomic distance of the atom is,a=1.7×10-10m
  • The atom’s mass is, M=8.26×10-26kg
02

Significance of the density

The density of the material is referred to as the ratio of mass to volume. Moreover, density is also described as the degree of the compactness of a particular substance.

03

Calculation of the density

The density of an atom is calculated by:

d=MV …(i)

Here, Mis the mass of the atom, and Vis the Volume.

AlsoV=a3

Substitute all the values in equation (i).

d=Ma3=8.2×10-26kg1.7×10-10m=1.7×104kg/m3

Thus, the density of the material is 1.7×104kg/m3.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that we hang a heavy ball with a mass of 10 kg (about 22 lb ) from a steel wire 3m long that is 3 mm in diameter. Steel is very stiff, and Young’s modulus for steel is unusually large, 2×1011N/m2.Calculate the stretchΔL of the steel wire. This calculation shows why in many cases it is a very good approximation to pretend that the wire doesn’t stretch at all (“ideal non extensible wire”).

: Two wires with equal lengths are made of pure copper. The diameter of wire A is twice the diameter of wire B. When 6kg masses are hung on the wires, wire B stretches more than wire A. You make careful measurements and compute young’s modulus for both wires. What do you find? (a) YA>YB, b) YA=YBc) YA<YB

In outer space, a rod is pushed to the right by a constant force F (Figure 4.54). Describe the pattern of interatomic distances along the rod. Include a specific comparison of the situation at locations A, B, and C. Explain briefly in terms of fundamental principles.

Figure 4.54

Hint: Consider the motion of an individual atom inside the rod, and various locations along the rod.

(b) After the rod in part (a) reaches a speed v, the object that had been exerting the force on the rod is removed. Describe the subsequent motion of the rod and the pattern of interatomic distances inside the rod. Include a specific comparison of the situation at locations A, B, and C. Explain briefly.

A spring suspended vertically is 18cmlong. When you suspend a 30g weight from the spring, at rest, the spring is 22cm long. Next you pull down on the weight so the spring is 23cm long and you release the weight from rest. What is the period of oscillation?

A hanging copper wire with diameter 1.4 mm (1.4×10-3)m is initially 0.95m long. When a 36kg mass is hung from it, the wire stretches an amount 1.83mm, and when a 72kg mass is hung from it, the wire stretches an amount 3.66mm. A mole of copper has a mass of 63g, and its density is9g/cm3 Find the approximate value of the effective spring stiffness of the interatomic force.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free