Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A circuit consists of two batteries (with negligible resistance), six ohmic resistors and connecting wires that have negligible resistance. The resistance R1is 10Ω, R2 is 20Ω, R3 is 30Ω, R4is 12Ω, R5is 15Ω and R6 is 20Ω. Unknown currents I1,I2 ,I3 ,I4 , I5 and I6 have their directions marked on the circuit diagram in figure 19.87.

(a) Write down a set of equations that could be solved for the six unknown currents. Make sure you can explain how to you got these equations. (b) When a correct set of equations is solved the currents are as follows (to the nearest miiampeares) I1=0.4394A, I2=0.3312A, I3=0.0065A, I4=0.1082A, I5=0.3247Aand I6=0.4329A. Check your equations by substituting in these numbers. (c) Suppose that you connect the negative lead of a voltmeter to location C. What does the voltmeter read, including both magnitude and sign? (d) What does the power output of the 5 V battery? (e) Resistor is made of a very thin metal wire that is 3 mm long, with a diameter of 0.1 mm. What is the electric field inside the metal resistor.

Short Answer

Expert verified

The set of equations for unknown currents are I1=I2+I4,I2=I3+I5,I1=I3+I6 , 20-10I1-15I4-12I6-20I1=0,5+15I4-20I2=0 and -5-30I3+12I6=0.

Step by step solution

01

Identification of given data

The potential of the battery for loop 1 is V1=20V

The potential of the battery for loop 2 and loop 3 is V2=5V

The resistance of the first resistor isR1=10Ω

The resistance of the second resistor is R2=20Ω

The resistance of the third resistor is R3=30Ω

The resistance of the fourth resistor is R4=12Ω

The resistance of the fifth resistor is R5=15Ω

The resistance of the sixth resistor isR6=20Ω

02

Conceptual Explanation

The conservation of charge at every node and conservation of potentials in every loop is used to solve the above problem. The conservation of charge says that the incoming currents at a node are equal to the outgoing current from that node. The conservation of potential says that the net potential in any loop is always zero.

03

Determination of equations to find the unknown currents

Apply the Kirchoff’s current law at C.

I1=I2+I4

Apply the Kirchoff’s current law at D.

I2=I3+I5

Apply the Kirchoff’s current law at F.

I1=I3+I6

Apply the Kirchoff’s voltage law in the loop 1.

V1-I1R1-I4R5-I6R4-I1R6=020-10I1-15I4-12I6-20I1=0

Apply the Kirchoff’s voltage law in the loop 2.

V2+I4R5-I2R2=05+15I4-20I2=0

Apply the Kirchoff’s voltage law in the loop 3.

-V2-I3R3+I6R4=0-5-30I3+12I6=0

Therefore, the set of equations for unknown currents are I1=I2+I4,I2=I3+I5 ,I1=I3+I6 , 20-10I1-15I4-12I6-20I1=0, 5+15I4-20I2=0and -5-30I3+12I6=0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using thick connecting wires that are very good conductors, a Nichrome wire (“wire 1”) of length L1 and cross-sectional area A1 is connected in series with a battery and an ammeter (this is circuit 1). The reading on the ammeter is I1. Now the Nichrome wire is removed and replaced with a different wire (“wire 2”), which is 2.5 times as long and has 5.5 times the cross-sectional area of the original wire (this is circuit 2). In the following question, a subscript 1 refers to circuit 1, and a subscript 2 refers to circuit 2. It will be helpful to write out your solutions to the following questions algebraically before doing numerical calculations. (Hint: Think about what is the same in these two circuits.)(a) What is the value of I2/ I1, the ratio of the conventional currents in the two circuits? (b) What is the value of R2/ R1, the ratio of the resistances of the wires? (c) What is the value of E2/ E1, the ratio of the electric fields inside the wires in the steady states?

Question: How does the final (equilibrium) charge on the capacitor plates depend on the particular resistor (for example, the kind of bulb or the length of Nichrome wire) in the circuit during charging? Explain briefly.

A long Iron slab of width w and height h emerges from a furnace, as shown in Figure 19.79. Because the end of the slab near the furnace is hot and the other end Is cold, the electron mobility increases significantly with the distance x. The electron mobility is u=u0+kxwhere u0is the mobility of the iron at the hot end of the slab. There are n iron atoms per cubic meter, and each atom contributes one electron to the sea of the mobile electron (we can neglect the small thermal expansion of the iron). A steady state conventional current runs through the slab from the hot end towards cold end, and an ammeter (not shown) measures the current to have a magnitude I in amperes. A voltmeter is connected to two locations a distance d apart, as shown. (a) Show the electric field inside the slab at two locations marked with ×. Pay attention to the relative magnitudes of the two vectors that you draw. (b) Explain why the magnitude of the electric field is different at these two locations. (c) At a distance x from the left voltmeter connection, what is the magnitude of the electric field in terms x and the given quantities w,h,d,u0,k,l, and n ( and fundamental constants)? (d) What is the sign of potential difference displayed on the voltmeter? Explain briefly. (e) In terms of the given quantitiesw,h,d,u0,k,l, and n and ( and fundamental constants), what is the magnitude of the voltmeter reading? Check your work. (f) What is the resistance of this length of the iron slab?

You are marooned on a desert island full of all kinds of standard electrical apparatus including a sensitive voltmeter, but you don’t have an ammeter. Explain how you could use the voltmeter to measure currents.

A particular capacitor is initially charged. Then a high-resistance Nichrome wire is connected between the plates of the capacitor, as shown in Figure 19.69. The needle of a compass placed under the wire deflects 20°to the east as soon as the connection is made. After 60sthe compass needle no longer deflects.

(a)Which of the diagrams in Figure 19.69 best indicates the electron current at three locations in this circuit? (1) 0.01safter the circuit is connected, (2) 15s after the circuit is connected, (3) 120s after the circuit is connected.

(b)Which of the diagrams in Figure 19.70 best indicates the net electric field inside the wire at three locations in this circuit? (1) 0.01s after the circuit is connected, (2) 15safter the circuit is connected, (3) 120s after the circuit is connected.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free