Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The deflection plates in an oscilloscope are 10cm by 2cm with a gap distance of 1mm. A 100V potential difference is suddenly applied to the initially uncharged plates through a 1000Ωresistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 95V?

Short Answer

Expert verified

t=5.3×10-8s

Step by step solution

01

Given data

Plate area A=10cm×2cm

Gap s=1mm

Potential difference V=95V

Max. Potential difference Vmax=100V

Resistance R=1000Ω

02

Formula used

V=Vmax(1-exp-tRC)

Where,Vmaxis max. Potential difference reaches

t Is time require

R is resistance andC is the capacitance

03

Calculation for time required

C=ε0As=8.85×10-12×2×10-31×10-3=1.77×10-11F

V=Vmax1-exp-tRC95=1001-exp-t1000×1.77×10-110.95=1-exp-t1.77×10-8exp-t1.77×10-8=0.05

t=5.3×10-8s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using thick connecting wires that are very good conductors, a Nichrome wire (“wire 1”) of length L1 and cross-sectional area A1 is connected in series with a battery and an ammeter (this is circuit 1). The reading on the ammeter is I1. Now the Nichrome wire is removed and replaced with a different wire (“wire 2”), which is 2.5 times as long and has 5.5 times the cross-sectional area of the original wire (this is circuit 2). In the following question, a subscript 1 refers to circuit 1, and a subscript 2 refers to circuit 2. It will be helpful to write out your solutions to the following questions algebraically before doing numerical calculations. (Hint: Think about what is the same in these two circuits.)(a) What is the value of I2/ I1, the ratio of the conventional currents in the two circuits? (b) What is the value of R2/ R1, the ratio of the resistances of the wires? (c) What is the value of E2/ E1, the ratio of the electric fields inside the wires in the steady states?

The capacitor in Figure 19.65 is initially charged, then the circuit is connected. Which graph in Figure 19.66 best describes the current through the bulb as a function of time?

You are marooned on a desert island full of all kinds of standard electrical apparatus including a sensitive voltmeter, but you don’t have an ammeter. Explain how you could use the voltmeter to measure currents.

Using thick connecting wires that are very good conductors, a Nichrome wire (“wire 1”) of length L1 and cross-sectional area A1 is connected in series with a battery and an ammeter (this is circuit 1). The reading on the ammeter is I1. Now the Nichrome wire is removed and replaced with a different wire (“wire 2”), which is 2.5 times as long and has 5.5 times the cross-sectional area of the original wire (this is circuit 2). In the following question, a subscript 1 refers to circuit 1, and a subscript 2 refers to circuit 2. It will be helpful to write out your solutions to the following questions algebraically before doing numerical calculations. (Hint: Think about what is the same in these two circuits.)(a) What is the value of I2/ I1, the ratio of the conventional currents in the two circuits? (b) What is the value of R2/ R1, the ratio of the resistances of the wires? (c) What is the value of E2/ E1, the ratio of the electric fields inside the wires in the steady states?

A long Iron slab of width w and height h emerges from a furnace, as shown in Figure 19.79. Because the end of the slab near the furnace is hot and the other end Is cold, the electron mobility increases significantly with the distance x. The electron mobility is u=u0+kxwhere u0is the mobility of the iron at the hot end of the slab. There are n iron atoms per cubic meter, and each atom contributes one electron to the sea of the mobile electron (we can neglect the small thermal expansion of the iron). A steady state conventional current runs through the slab from the hot end towards cold end, and an ammeter (not shown) measures the current to have a magnitude I in amperes. A voltmeter is connected to two locations a distance d apart, as shown. (a) Show the electric field inside the slab at two locations marked with ×. Pay attention to the relative magnitudes of the two vectors that you draw. (b) Explain why the magnitude of the electric field is different at these two locations. (c) At a distance x from the left voltmeter connection, what is the magnitude of the electric field in terms x and the given quantities w,h,d,u0,k,l, and n ( and fundamental constants)? (d) What is the sign of potential difference displayed on the voltmeter? Explain briefly. (e) In terms of the given quantitiesw,h,d,u0,k,l, and n and ( and fundamental constants), what is the magnitude of the voltmeter reading? Check your work. (f) What is the resistance of this length of the iron slab?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free