Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A circuit consists of a battery, whose emf is K, and five Nichrome wires, three thick and two thin as shown in Figure 19.78. The thicknesses of the wires have been exaggerated in order to give you room to draw inside the wires. The internal resistance of the battery is negligible compared to the resistance of the wires. The voltmeter is not attached until part (e) of the problem. (a) Draw and label appropriately the electric field at the locations marked × inside the wires, paying attention to appropriate relative magnitudes of the vectors that you draw. (b) Show the approximate distribution of charges for this circuit. Make the important aspects of the charge distribution very clear in your drawing, supplementing your diagram if necessary with very brief written descriptions on the diagram. Make sure that parts (a) and (b) of this problem are consistent with each other. (c) Assume that you know the mobile-electron density n and the electron mobility u at room temperature for Nichrome. The lengths (L1,L2,L3)and diameters (d1,d2)of the wires are given on the diagram. Calculate accurately the number of electrons that leave the negative end of the battery every second. Assume that no part of the circuit gets very hot. Express your result in terms of the given quantities (K,L1,L2,L3,d1,d2,nandu) . Explain your work and identify the principles you are using. (d) In the case that d2d1, what is the approximate number of electrons that leave the negative end of every second? (e) A voltmeter is attached to the circuit with its + lead connected to location B (halfway along the leftmost thick wire) and its - lead connected to location C (halfway along the leftmost thin wire). In the case thatd2d1 , what is the approximate voltage shown on the voltmeter, including sign? Express your result in terms of the given quantities (K,L1,L2,L3,d1,d2,nandu).

Short Answer

Expert verified

(d) The approximate number of electrons that leave the negative end of every second whend2d1 isnuπd22K8L2 .

Step by step solution

01

Given data

A circuit is given which has a battery with an emf value K and five Nichrome wires in a number of 5, three out of five are thick, and two are thin. The mobile-electron density is given as n, and the electron mobility is given as u at room temperature for Nichrome. The lengths of the wires areL1,L2,L3 , and the diameters of the wires are d1,d2.

02

Concept

The number of electrons flowing in a given circuit can be written as,

ne=nAuEt (1)

Here n is the charge density of the charge carrier; A is the cross-sectional area of the conductor, E is the electric field in the conductor, u is the mobility of the charge carriers, t is the time.

03

(d) In the case d2≪d1, calculation of the approximate number of electrons that leave the negative end of every second

The number of electrons that leave the negative end of the battery every second isnuπd22K42d22L1d12+d22L3d12+2L2 . (Refer to SID:875865-19-59 P-c)

If

d2d1d2d11

Then in the expression, n1=nuπd22K42d22L1d12+d22L3d12+2L2the term 2d22L1d12+d22L3d12 will be written as,

2d22L1d12+d22L3d120

.

Therefore we can write the expression for the number of electrons that leaves the negative end of every second can be written as,

n1=nuπd22K42L2n1=nuπd22K8L2

Thus, the approximate number of electrons that leave the negative end of every second when d2d1is nuπd22K8L2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using thick connecting wires that are very good conductors, a Nichrome wire (“wire 1”) of length L1 and cross-sectional area A1 is connected in series with a battery and an ammeter (this is circuit 1). The reading on the ammeter is I1. Now the Nichrome wire is removed and replaced with a different wire (“wire 2”), which is 2.5 times as long and has 5.5 times the cross-sectional area of the original wire (this is circuit 2). In the following question, a subscript 1 refers to circuit 1, and a subscript 2 refers to circuit 2. It will be helpful to write out your solutions to the following questions algebraically before doing numerical calculations. (Hint: Think about what is the same in these two circuits.)(a) What is the value of I2/ I1, the ratio of the conventional currents in the two circuits? (b) What is the value of R2/ R1, the ratio of the resistances of the wires? (c) What is the value of E2/ E1, the ratio of the electric fields inside the wires in the steady states?

In the circuit shown in Figure 19.77 the emf of the battery is 7.4V. Resistor R1has a resistance of 31Ω, resistor R2 has a resistance of 47Ω, and resistor R3has a resistance of 52Ω . A steady current flows through the circuit.

(a)What is the equivalent resistance of R1and R2 ? (b) What is the equivalent resistance of all three resistors? (c) What is the conventional current throughR3

1/KThe charge on an isolated capacitor does not change when a sheet of glass is inserted between the capacitor plates, and we find that the potential difference decreases (because the electric field inside the insulator is reduced by a factor of 1/K ). Suppose instead that the capacitor is connected to a battery, so that the battery tries to maintain a fixed potential difference across the capacitor. (a) A light bulb and an air-gap capacitor of capacitanceC are connected in series to a battery with known emf. What is the final chargeQ on the positive plate of the capacitor? (b) After fully charging the capacitor, a sheet of plastic whose dielectric constantK is inserted into the capacitor and fills the gap. Does any current run through the light bulb? Why? What is the final charge on the positive plate of the capacitor?

The capacitor in Figure 19.67 is initially uncharged, then the circuit is connected. Which graph in Figure 19.66 best describes the current through the bulb as a function of time?

Consider a copper wire with a cross-sectional area of 1 mm2 (similar to your connecting wires ) and carrying 0.3 A of current, which is about what you get in a circuit with a thick-filament bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free