Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A circuit consists of a battery, whose emf is K, and five Nichrome wires, three thick and two thin as shown in Figure 19.78. The thicknesses of the wires have been exaggerated in order to give you room to draw inside the wires. The internal resistance of the battery is negligible compared to the resistance of the wires. The voltmeter is not attached until part (e) of the problem. (a) Draw and label appropriately the electric field at the locations marked × inside the wires, paying attention to appropriate relative magnitudes of the vectors that you draw. (b) Show the approximate distribution of charges for this circuit. Make the important aspects of the charge distribution very clear in your drawing, supplementing your diagram if necessary with very brief written descriptions on the diagram. Make sure that parts (a) and (b) of this problem are consistent with each other. (c) Assume that you know the mobile-electron density n and the electron mobility u at room temperature for Nichrome. The lengths (L1,L2,L3)and diameters (d1,d2)of the wires are given on the diagram. Calculate accurately the number of electrons that leave the negative end of the battery every second. Assume that no part of the circuit gets very hot. Express your result in terms of the given quantities (K,L1,L2,L3,d1,d2,nandu). Explain your work and identify the principles you are using. (d) In the case that d2d1, what is the approximate number of electrons that leave the negative end of every second? (e) A voltmeter is attached to the circuit with its + lead connected to location B (halfway along the leftmost thick wire) and its - lead connected to location C (halfway along the leftmost thin wire). In the case that d2d1, what is the approximate voltage shown on the voltmeter, including sign? Express your result in terms of the given quantities(K,L1,L2,L3,d1,d2,nandu).

Short Answer

Expert verified

(b) The charges will be distributed as a small gradient along the thick wires, and the charges will be distributed as a larger gradient along the thin wires.

Step by step solution

01

Given data

A circuit with has a battery whose emf value is K, and the five Nichrome wires are connected. Out of 5, three are thick wires, and two are thin wires.

02

Concept

The number of charge carriers that are moving in a conductor which is connected to a circuit can be written as,

ne=nAuEt (1)

Here n is the charge density of the charge carrier, A is the cross-sectional area of the conductor, E is the electric field in the conductor, u is the mobility of the charge carriers, t is the time.

03

(b) The approximate distribution of charges for this circuit 

The expression that describes the relationship between cross-sectional area and the electric field is,

A1E1=A2E2(Refer to SID: 875865-19-59 P-a)

Here A1 is the cross-sectional area of the thick wire, E1 is the electric field in the thick wire, A2is the cross-sectional area of the thin wire, E2is the electric field in the thin wire.

We know the thick wires have a smaller electric field; thus, the charges will be distributed as a small gradient along the thick wires.

For thin wires, the electric field is large; thus, the charges will be distributed as a larger gradient along the thin wires.

The central (mid) thick wire in the diagram has less charge by symmetry.

The distribution of the charges in the wires can be shown as,

Thus, the charges will be distributed as a small gradient along the thick wires, and the charges will be distributed as a larger gradient along the thin wires.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A certain 6 V battery delivers 12 A when short circuited. How much current does battery deliver when 1Ω resistor is connected to it?

Someone said, “Current takes the path of least resistance.” What’s wrong with this statement?

A circuit consists of two batteries (with negligible resistance), six ohmic resistors and connecting wires that have negligible resistance. The resistance R1is 10Ω, R2 is 20Ω, R3 is 30Ω, R4is 12Ω, R5is 15Ω and R6 is 20Ω. Unknown currents I1,I2 ,I3 ,I4 , I5 and I6 have their directions marked on the circuit diagram in figure 19.87.

(a) Write down a set of equations that could be solved for the six unknown currents. Make sure you can explain how to you got these equations. (b) When a correct set of equations is solved the currents are as follows (to the nearest miiampeares) I1=0.4394A, I2=0.3312A, I3=0.0065A, I4=0.1082A, I5=0.3247Aand I6=0.4329A. Check your equations by substituting in these numbers. (c) Suppose that you connect the negative lead of a voltmeter to location C. What does the voltmeter read, including both magnitude and sign? (d) What does the power output of the 5 V battery? (e) Resistor is made of a very thin metal wire that is 3 mm long, with a diameter of 0.1 mm. What is the electric field inside the metal resistor.

The deflection plates in an oscilloscope are 10cm by 2cm with a gap distance of 1mm. A 100V potential difference is suddenly applied to the initially uncharged plates through a 1000Ωresistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 95V?

1/KThe charge on an isolated capacitor does not change when a sheet of glass is inserted between the capacitor plates, and we find that the potential difference decreases (because the electric field inside the insulator is reduced by a factor of 1/K ). Suppose instead that the capacitor is connected to a battery, so that the battery tries to maintain a fixed potential difference across the capacitor. (a) A light bulb and an air-gap capacitor of capacitanceC are connected in series to a battery with known emf. What is the final chargeQ on the positive plate of the capacitor? (b) After fully charging the capacitor, a sheet of plastic whose dielectric constantK is inserted into the capacitor and fills the gap. Does any current run through the light bulb? Why? What is the final charge on the positive plate of the capacitor?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free