Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the circuit shown in Figure 19.77 the emf of the battery is 7.4V. Resistor R1has a resistance of 31ฮฉ, resistor R2 has a resistance of 47ฮฉ, and resistor R3has a resistance of 52ฮฉ . A steady current flows through the circuit.

(a)What is the equivalent resistance of R1and R2 ? (b) What is the equivalent resistance of all three resistors? (c) What is the conventional current throughR3

Short Answer

Expert verified

70.68ฮฉ

Step by step solution

01

Given Data

R1=31ฮฉR2=47ฮฉR3=52ฮฉemf=7.4V

02

Concept

The equivalent resistance is the addition of the resistances, when the batteries are connected in series.

03

Step 3(b): Determine the equivalent resistance of all three resistors

The equivalent resistance of all the three resistors,

R=R3+R4=52+18.68=70.68ฮฉReferring to subpartaof the SID:875865 - 19 - 56P - a,takeR4value

Hence, the equivalent resistance of all three resistors is 70.68ฮฉ

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a copper wire with a cross-sectional area of 1 mm2 (similar to your connecting wires ) and carrying 0.3 A of current, which is about what you get in a circuit with a thick-filament bulb and two batteries in series. Calculate the strength of the very small electric field required to drive this current through the wire.

A desk lamp that plugs into a wall socket can use a or a light bulb. Which bulb has the larger resistance? Explain briefly.

Question: in circuit 1 (Figure 19.72), an uncharged capacitor is connected in series with two batteries and one light bulb. Circuit 2 (Figure 19.72) contains two light bulbs identical to the bulb in the circuit; in all other respects, it is identical to circuit 1. In circuit 1, the light bulb stays lit for 25 s. The following questions refer to these circuits. You should draw diagrams representing the fields and charges in each circuit at the times mentioned, in order to answer the questions.

(a)One microsecond after connecting both circuits, which of the following are true? Chose all that apply: (1) the net electric field at location B in circuit 1 is larger than the net electric field at location B in circuit 2. (2) At location A in 1, electrons flow to the left. (3) At location A in circuit 1, the electric fields due to charges on the surface of the wires and batteries points to the right. (4) in circuit 1 the potential difference across the capacitor plates is equal to the emf of the batteries. (5) The current in circuit 1 is larger than the current in circuit 2.

(b)Two seconds after connecting both circuits, which of the following are true? Choose all that apply: (1) there is more charge on the plates of capacitor 1 than there is on the plates of capacitor 2. (2) there is negative charge on the right plate of the capacitor in circuit 1. (3) At location B in circuit 2 the net electric field points to the right. (4) At location B in circuit 2 the fringe field of the capacitor points to the right. (5) At location A in circuit 1 the fringe field of the capacitor points to the left.

(c)Which of the graphs in Figure 19.73 represents the amount of charge on the positive plate of the capacitor in circuit 1 as a function of time?

(d)Which of the graphs in Figure 19.73 represents the current in circuit 1 as a function of time?

Suppose that you charge a 1 F capacitor in a circuit containing two 15Vbatteries, so the final potential difference across the plates is3V.How much charge is on each plate? How many excess electrons are on the negative plate?

Which of the following statements about the discharging of a capacitor through a light bulb are correct? Choose all that are true. (1) The fringe field of the capacitor decreases as the charge on the capacitor plates decreases. (2) Electrons flow across the gap between the plates of the capacitor, thus reducing the charge on the capacitor. (3) The electric field at a location inside the wire is due to charge on the surface of the wires and charge on the plates of the capacitor. (4) Electrons in the wires flow away from the negative plate toward the positive plate, reducing the charge on the plates.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free