Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In copper at room temperature, the mobility of mobile electrons is about 4.5×10-3(m/s)V/m,and there are about8×1028mobile electrons perm3Calculate the conductivityσand include the correct units. In actual practice, it is usually easier to measure the conductivityσand deduce the mobilityufrom this measurement.

Short Answer

Expert verified

57.6×106C·m2/V·s

Step by step solution

01

Given Data

Mobility of electrons, μ=4.5×10-3m/sV/m

Number of electrons perm3,n=8×108

02

Concept

The conductivity is defined as the current flowing through a unit cross-sectional area.

03

Calculate the conductivity

Conductivity,

σ=neμwhere,eischargeofelectrons(1.6×10-19C=8×10281.6×10-19C4.5×10-3=57.6×106C·m2/V·s

Hence, the conductivity is 57.6×106C·m2/V·s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that instead of placing an insulating layer between the plates of the capacitor shown in Figure 19.57, you inserted a metal slab of the same thickness, just barely not touching the plates. In the same circuit, would this capacitor keep the current more nearly constant or less so than capacitor 2 in Question Q4? Explain why this is essentially equivalent to making a capacitor with a shorter distance between the plates.

The two circuits shown in Figure 19.59 have different capacitors but the same batteries and thin-filament bulbs. The capacitors in circuit 1and circuit 2areidentical exceptthat the capacitor in circuit 2was constructed with its plates closer together. Both capacitors have air between their plates. The capacitors are initially uncharged. In each circuit the batteries are connected for a short time compared to the time required to reach equilibrium, and then they are disconnected. In which circuit (1or 2) does the capacitor now have more charge? Explain your reasoning in detail.

A long Iron slab of width w and height h emerges from a furnace, as shown in Figure 19.79. Because the end of the slab near the furnace is hot and the other end Is cold, the electron mobility increases significantly with the distance x. The electron mobility isu=u0+kxwhere u0is the mobility of the iron at the hot end of the slab. There are n iron atoms per cubic meter, and each atom contributes one electron to the sea of the mobile electron (we can neglect the small thermal expansion of the iron). A steady state conventional current runs through the slab from the hot end towards cold end, and an ammeter (not shown) measures the current to have a magnitude I in amperes. A voltmeter is connected to two locations a distance d apart, as shown. (a) Show the electric field inside the slab at two locations marked with×. Pay attention to the relative magnitudes of the two vectors that you draw. (b) Explain why the magnitude of the electric field is different at these two locations. (c) At a distance x from the left voltmeter connection, what is the magnitude of the electric field in terms x and the given quantities w, h, d, u0, k, l, and n ( and fundamental constants)? (d) What is the sign of potential difference displayed on the voltmeter? Explain briefly. (e) In terms of the given quantitiesw, h, d, u0, k, l, and n and ( and fundamental constants), what is the magnitude of the voltmeter reading? Check your work. (f) What is the resistance of this length of the iron slab?

The capacitor in Figure 19.65 is initially charged, then the circuit is connected. Which graph in Figure 19.66 best describes the current through the bulb as a function of time?

The capacitor in Figure 19.68 is initially uncharged, then the circuit is connected. Which graph in Figure 19.66 best describes the magnitude of the fringe field of the capacitor at location A(inside the connecting wire) as a function of time?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free