Chapter 19: Q47P (page 799)
When a thin-filament light bulb is connected to two batteries in series, the current isWhat is the resistance of the glowing thin-filament bulb?
Chapter 19: Q47P (page 799)
When a thin-filament light bulb is connected to two batteries in series, the current isWhat is the resistance of the glowing thin-filament bulb?
All the tools & learning materials you need for study success - in one app.
Get started for freeA desk lamp that plugs into a wall socket can use a or a light bulb. Which bulb has the larger resistance? Explain briefly.
A circuit consists of a battery, whose emf is K, and five Nichrome wires, three thick and two thin as shown in Figure 19.78. The thicknesses of the wires have been exaggerated in order to give you room to draw inside the wires. The internal resistance of the battery is negligible compared to the resistance of the wires. The voltmeter is not attached until part (e) of the problem. (a) Draw and label appropriately the electric field at the locations marked × inside the wires, paying attention to appropriate relative magnitudes of the vectors that you draw. (b) Show the approximate distribution of charges for this circuit. Make the important aspects of the charge distribution very clear in your drawing, supplementing your diagram if necessary with very brief written descriptions on the diagram. Make sure that parts (a) and (b) of this problem are consistent with each other. (c) Assume that you know the mobile-electron density n and the electron mobility u at room temperature for Nichrome. The lengths and diameters of the wires are given on the diagram. Calculate accurately the number of electrons that leave the negative end of the battery every second. Assume that no part of the circuit gets very hot. Express your result in terms of the given quantities . Explain your work and identify the principles you are using. (d) In the case that , what is the approximate number of electrons that leave the negative end of every second? (e) A voltmeter is attached to the circuit with its + lead connected to location B (halfway along the leftmost thick wire) and its - lead connected to location C (halfway along the leftmost thin wire). In the case that , what is the approximate voltage shown on the voltmeter, including sign? Express your result in terms of the given quantities.
The conductivity of tungsten at room temperature, , is significantly smaller than that of copper. At the very high temperature of a glowing light-bulb filament (nearly 3000 kelvins), the conductivity of tungsten is 18 times smaller than it is at room temperature. The tungsten filament of a thick-filament bulb has a radius of about 0.015 mm. Calculate the electric field required to drive 0.20 A of current through the glowing bulb and show that it is very large compared to the field in the connecting copper wires.
You connect a battery to a capacitor consisting of two circular plates of radius separated by an air gap of , what is the charge on the positive plate?
A long Iron slab of width w and height h emerges from a furnace, as shown in Figure 19.79. Because the end of the slab near the furnace is hot and the other end Is cold, the electron mobility increases significantly with the distance x. The electron mobility is where u0is the mobility of the iron at the hot end of the slab. There are n iron atoms per cubic meter, and each atom contributes one electron to the sea of the mobile electron (we can neglect the small thermal expansion of the iron). A steady state conventional current runs through the slab from the hot end towards cold end, and an ammeter (not shown) measures the current to have a magnitude I in amperes. A voltmeter is connected to two locations a distance d apart, as shown. (a) Show the electric field inside the slab at two locations marked with ×. Pay attention to the relative magnitudes of the two vectors that you draw. (b) Explain why the magnitude of the electric field is different at these two locations. (c) At a distance x from the left voltmeter connection, what is the magnitude of the electric field in terms x and the given quantities w,h,d,u0,k,l, and n ( and fundamental constants)? (d) What is the sign of potential difference displayed on the voltmeter? Explain briefly. (e) In terms of the given quantitiesw,h,d,u0,k,l, and n and ( and fundamental constants), what is the magnitude of the voltmeter reading? Check your work. (f) What is the resistance of this length of the iron slab?
What do you think about this solution?
We value your feedback to improve our textbook solutions.