Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You connect a 9 Vbattery to a capacitor consisting of two circular plates of radius 0.08 mseparated by an air gap of 2mm, what is the charge on the positive plate?

Short Answer

Expert verified

The charge on the capacitor is 0.8nC.

Step by step solution

01

A concept:

A parallel plate capacitor is an arrangement of two metal plates connected in parallel and separated from each other by a certain distance. The gap between the plates is occupied by a dielectric medium.

02

Given data:

The radius of circular plates,r=0.08m

Voltage, V=9V

The width of the gap between the plates is,

s=2mm=2mm10-3m1mm=2×10-3m

03

Define capacitance:

The capacitance of a parallel plate capacitor given by a relation,

C=ε0As

Here, sis the width of the gap between the plates, A is the area of the capacitor’s plate, and ε0is the permittivity of free space having a value localid="1662143076540" 8.85×10-12C2N·m2.

The relation between capacitor and the charge on the plates of the capacitor can be expressed as,

C=QV

Here, Qis the charge on the plates and V is the potential between the plates.

By comparing equations (1) and (2), you have

ε0As=QVQ=ε0AVs

Since the plates are in a circular shape, the area of plates is taken asπr2. Thus,

Q=ε0πr2Vs

Here, r is the radius of circular plates.

Substitute known values in the above equation.

localid="1668576415138" Q=8.85×10-12C2N·m2×3.14×0.08m2×9V2×10-3m=0.8×10-9C=0.8nC

Hence, the charge on the capacitor is 0.8nC.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

How is the charging time for a capacitor correlated with the initial current? That is, if the initial current is bigger, is the charging time, longer, shorter, or the same?

Question: in circuit 1 (Figure 19.72), an uncharged capacitor is connected in series with two batteries and one light bulb. Circuit 2 (Figure 19.72) contains two light bulbs identical to the bulb in the circuit; in all other respects, it is identical to circuit 1. In circuit 1, the light bulb stays lit for 25 s. The following questions refer to these circuits. You should draw diagrams representing the fields and charges in each circuit at the times mentioned, in order to answer the questions.

(a)One microsecond after connecting both circuits, which of the following are true? Chose all that apply: (1) the net electric field at location B in circuit 1 is larger than the net electric field at location B in circuit 2. (2) At location A in 1, electrons flow to the left. (3) At location A in circuit 1, the electric fields due to charges on the surface of the wires and batteries points to the right. (4) in circuit 1 the potential difference across the capacitor plates is equal to the emf of the batteries. (5) The current in circuit 1 is larger than the current in circuit 2.

(b)Two seconds after connecting both circuits, which of the following are true? Choose all that apply: (1) there is more charge on the plates of capacitor 1 than there is on the plates of capacitor 2. (2) there is negative charge on the right plate of the capacitor in circuit 1. (3) At location B in circuit 2 the net electric field points to the right. (4) At location B in circuit 2 the fringe field of the capacitor points to the right. (5) At location A in circuit 1 the fringe field of the capacitor points to the left.

(c)Which of the graphs in Figure 19.73 represents the amount of charge on the positive plate of the capacitor in circuit 1 as a function of time?

(d)Which of the graphs in Figure 19.73 represents the current in circuit 1 as a function of time?

The deflection plates in an oscilloscope are 10cm by 2cm with a gap distance of 1mm. A 100V potential difference is suddenly applied to the initially uncharged plates through a 1000Ωresistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 95V?

A certain has rectangular plates56cmby 24 cm and the gap width is 20.0 mm. What is its capacitance? We see that typical capacitances are very small when measured in farads. A role="math" localid="1662139654139" 1Fcapacitor is quite extraordinary. Apparently it has a very large area A(all wrapped up in a small package), and a vary small gap s.

Using thick connecting wires that are very good conductors, a Nichrome wire (“wire 1”) of length L1 and cross-sectional area A1 is connected in series with a battery and an ammeter (this is circuit 1). The reading on the ammeter is I1. Now the Nichrome wire is removed and replaced with a different wire (“wire 2”), which is 2.5 times as long and has 5.5 times the cross-sectional area of the original wire (this is circuit 2). In the following question, a subscript 1 refers to circuit 1, and a subscript 2 refers to circuit 2. It will be helpful to write out your solutions to the following questions algebraically before doing numerical calculations. (Hint: Think about what is the same in these two circuits.)(a) What is the value of I2/ I1, the ratio of the conventional currents in the two circuits? (b) What is the value of R2/ R1, the ratio of the resistances of the wires? (c) What is the value of E2/ E1, the ratio of the electric fields inside the wires in the steady states?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free