Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When glowing, a thin-filament bulb has a resistance of about 30Ωand a thick filament bulb has a resistance of about 10Ω. If they are in parallel, what is their equivalent resistance? How much current goes through two 1.5Vflashlight batteries in series if a thin-filament bulb and a thick filament bulb are connected in parallel to batteries?

Short Answer

Expert verified

The equivalent resistance of the parallel combination of the resistors is7.5Ω and the current flowing through the flashlight batteries is 0.4A.

Step by step solution

01

Given Data

Resistance of thin filament bulb:30Ω

Resistance of thick filament bulb:10Ω

The voltage across terminals of a battery:1.5V

02

Concept

When two resistances R1andR2 are connected in parallel, the reciprocal of their equivalent resistanceRp is equal to the sum of the reciprocal of the two resistances.

role="math" localid="1662123335573" 1Rp=1R1+1R2

03

Calculations

The equivalent resistance of the two bulbs can be calculated using equation.

1Rp=1R1+1R2

For R1=30ΩandR2=10Ω, the equation becomes-

role="math" localid="1662123653974" 1Rp=130Ω+110Ω=1+330Ω=430Ω

Further solving, we get-

role="math" localid="1662123810780" Rp=304Ω=7.5Ω

The equivalent resistance of the parallel combination of two bulbs is: 7.5Ω

When two batteries are connected in series combination, parallel to the combination of resistors, the current flowing in the circuit will be role="math" localid="1662123905440" I.

Using Ohm’s Law, the current in the circuit is given as-

role="math" localid="1662124013334" I=VRp=2×1.5V7.5Ω=0.4A

The current flowing through the batteries is role="math" localid="1662124063254" 0.4A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that instead of placing an insulating layer between the plates of the capacitor shown in Figure 19.57, you inserted a metal slab of the same thickness, just barely not touching the plates. In the same circuit, would this capacitor keep the current more nearly constant or less so than capacitor 2 in Question Q4? Explain why this is essentially equivalent to making a capacitor with a shorter distance between the plates.

A circuit consists of a battery, whose emf is K, and five Nichrome wires, three thick and two thin as shown in Figure 19.78. The thicknesses of the wires have been exaggerated in order to give you room to draw inside the wires. The internal resistance of the battery is negligible compared to the resistance of the wires. The voltmeter is not attached until part (e) of the problem. (a) Draw and label appropriately the electric field at the locations marked × inside the wires, paying attention to appropriate relative magnitudes of the vectors that you draw. (b) Show the approximate distribution of charges for this circuit. Make the important aspects of the charge distribution very clear in your drawing, supplementing your diagram if necessary with very brief written descriptions on the diagram. Make sure that parts (a) and (b) of this problem are consistent with each other. (c) Assume that you know the mobile-electron density n and the electron mobility u at room temperature for Nichrome. The lengths (L1,L2,L3)and diameters (d1,d2)of the wires are given on the diagram. Calculate accurately the number of electrons that leave the negative end of the battery every second. Assume that no part of the circuit gets very hot. Express your result in terms of the given quantities (K,L1,L2,L3,d1,d2,nandu) . Explain your work and identify the principles you are using. (d) In the case that d2d1, what is the approximate number of electrons that leave the negative end of every second? (e) A voltmeter is attached to the circuit with its + lead connected to location B (halfway along the leftmost thick wire) and its - lead connected to location C (halfway along the leftmost thin wire). In the case thatd2d1 , what is the approximate voltage shown on the voltmeter, including sign? Express your result in terms of the given quantities (K,L1,L2,L3,d1,d2,nandu).

When a particular capacitor, which is initially uncharged, is connected to a battery and a small light bulb, the light bulb is initially bright but gradually gets dimmer, and after 45s it goes out. The diagrams in Figure 19.71 show the electric field in the circuit and the surface charge distribution on the wires at three different times ( 0.01s, 8s, and 240s) after the connection to the bulb is made. Which of the diagrams best represents the state of the circuit at each time specified?

(a)0.01safter the connection is made,

(b)8safter the connection is made,

(c)240safter the connection is made.

How is the charging time for a capacitor correlated with the initial current? That is, if the initial current is bigger, is the charging time, longer, shorter, or the same?

A circuit consists of a battery, whose emf is K, and five Nichrome wires, three thick and two thin as shown in Figure 19.78. The thicknesses of the wires have been exaggerated in order to give you room to draw inside the wires. The internal resistance of the battery is negligible compared to the resistance of the wires. The voltmeter is not attached until part (e) of the problem. (a) Draw and label appropriately the electric field at the locations marked × inside the wires, paying attention to appropriate relative magnitudes of the vectors that you draw. (b) Show the approximate distribution of charges for this circuit. Make the important aspects of the charge distribution very clear in your drawing, supplementing your diagram if necessary with very brief written descriptions on the diagram. Make sure that parts (a) and (b) of this problem are consistent with each other. (c) Assume that you know the mobile-electron density n and the electron mobility u at room temperature for Nichrome. The lengths (L1,L2,L3)and diameters(d1,d2) of the wires are given on the diagram. Calculate accurately the number of electrons that leave the negative end of the battery every second. Assume that no part of the circuit gets very hot. Express your result in terms of the given quantities(K,L1,L2,L3,d1,d2,nandu) . Explain your work and identify the principles you are using. (d) In the case thatd2d1 , what is the approximate number of electrons that leave the negative end of every second? (e) A voltmeter is attached to the circuit with its + lead connected to location B (halfway along the leftmost thick wire) and its - lead connected to location C (halfway along the leftmost thin wire). In the case thatrole="math" localid="1663035964741" d2d1 , what is the approximate voltage shown on the voltmeter, including sign? Express your result in terms of the given quantitiesrole="math" localid="1663036061574" (K,L1,L2,L3,d1,d2,nandu) .

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free