Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The two circuits shown in Figure 19.59 have different capacitors but the same batteries and thin-filament bulbs. The capacitors in circuit 1and circuit 2areidentical exceptthat the capacitor in circuit 2was constructed with its plates closer together. Both capacitors have air between their plates. The capacitors are initially uncharged. In each circuit the batteries are connected for a short time compared to the time required to reach equilibrium, and then they are disconnected. In which circuit (1or 2) does the capacitor now have more charge? Explain your reasoning in detail.

Short Answer

Expert verified

The Capacitor2 has more charge.

Step by step solution

01

Write the given data from the question.

The two circuits consist batteries, thin filaments bulbs and Capacitors.

Distance between the plates of the Capacitor 2is less as compare to the capacitor 1.

02

Determine the formulas to calculate the capacitor have more charge.

The expression to calculate the capacitance of the capacitor is given as follows.

C=ε0Ad

Here, Ais the area of the plates, and dis the separation between the plates.

The expression to calculate the charge on the plates is given as follows.

Q=CΔV …… (i)

Here,ΔVis the potential difference between the plates of capacitor.

03

Calculate the capacitor have more charge.

Calculate the charge on the plates of the capacitors.

Substituteε0AdforCinto equation (i).

Q=ε0AdΔV

Since all the parameters of the circuit are the same therefore, the term ε0AΔVcan be assumed as constant and equation can be rewrite as,

Qα1d

From the above expression, it is clear that the charge on the capacitor plates is inversely proportional to the distance between the plates of the capacitor.

Therefore, the capacitor with less distance between the plates will have more charge. Capacitor2 has less distance and will have more charge than capacitor1 .

Hence capacitor2 has more charge.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A capacitor is connected to batteries by Nichrome wires and allowed to charge completely. Then the plates are suddenly moved farther apart. Describe what happens and explain in detail why it happens, based on fundamental physical principles. If you give a direction for a current, state whether you are describing electron current or conventional current. Include appropriate diagrams to support your explanation.

A long Iron slab of width w and height h emerges from a furnace, as shown in Figure 19.79. Because the end of the slab near the furnace is hot and the other end Is cold, the electron mobility increases significantly with the distance x. The electron mobility is u=u0+kxwhere u0is the mobility of the iron at the hot end of the slab. There are n iron atoms per cubic meter, and each atom contributes one electron to the sea of the mobile electron (we can neglect the small thermal expansion of the iron). A steady state conventional current runs through the slab from the hot end towards cold end, and an ammeter (not shown) measures the current to have a magnitude I in amperes. A voltmeter is connected to two locations a distance d apart, as shown. (a) Show the electric field inside the slab at two locations marked with ×. Pay attention to the relative magnitudes of the two vectors that you draw. (b) Explain why the magnitude of the electric field is different at these two locations. (c) At a distance x from the left voltmeter connection, what is the magnitude of the electric field in terms x and the given quantities w,h,d,u0,k,l, and n ( and fundamental constants)? (d) What is the sign of potential difference displayed on the voltmeter? Explain briefly. (e) In terms of the given quantitiesw,h,d,u0,k,l, and n and ( and fundamental constants), what is the magnitude of the voltmeter reading? Check your work. (f) What is the resistance of this length of the iron slab?

A circuit consists of a battery, whose emf is K, and five Nichrome wires, three thick and two thin as shown in Figure 19.78. The thicknesses of the wires have been exaggerated in order to give you room to draw inside the wires. The internal resistance of the battery is negligible compared to the resistance of the wires. The voltmeter is not attached until part (e) of the problem. (a) Draw and label appropriately the electric field at the locations marked × inside the wires, paying attention to appropriate relative magnitudes of the vectors that you draw. (b) Show the approximate distribution of charges for this circuit. Make the important aspects of the charge distribution very clear in your drawing, supplementing your diagram if necessary with very brief written descriptions on the diagram. Make sure that parts (a) and (b) of this problem are consistent with each other. (c) Assume that you know the mobile-electron density n and the electron mobility u at room temperature for Nichrome. The lengths (L1,L2,L3)and diameters(d1,d2) of the wires are given on the diagram. Calculate accurately the number of electrons that leave the negative end of the battery every second. Assume that no part of the circuit gets very hot. Express your result in terms of the given quantities(K,L1,L2,L3,d1,d2,nandu) . Explain your work and identify the principles you are using. (d) In the case thatd2d1 , what is the approximate number of electrons that leave the negative end of every second? (e) A voltmeter is attached to the circuit with its + lead connected to location B (halfway along the leftmost thick wire) and its - lead connected to location C (halfway along the leftmost thin wire). In the case thatrole="math" localid="1663035964741" d2d1 , what is the approximate voltage shown on the voltmeter, including sign? Express your result in terms of the given quantitiesrole="math" localid="1663036061574" (K,L1,L2,L3,d1,d2,nandu) .

A long Iron slab of width w and height h emerges from a furnace, as shown in Figure 19.79. Because the end of the slab near the furnace is hot and the other end Is cold, the electron mobility increases significantly with the distance x. The electron mobility is u=u0+kxwhere u0is the mobility of the iron at the hot end of the slab. There are n iron atoms per cubic meter, and each atom contributes one electron to the sea of the mobile electron (we can neglect the small thermal expansion of the iron). A steady state conventional current runs through the slab from the hot end towards cold end, and an ammeter (not shown) measures the current to have a magnitude I in amperes. A voltmeter is connected to two locations a distance d apart, as shown. (a) Show the electric field inside the slab at two locations marked with ×. Pay attention to the relative magnitudes of the two vectors that you draw. (b) Explain why the magnitude of the electric field is different at these two locations. (c) At a distance x from the left voltmeter connection, what is the magnitude of the electric field in terms x and the given quantities w,h,d,u0,k,l, and n ( and fundamental constants)? (d) What is the sign of potential difference displayed on the voltmeter? Explain briefly. (e) In terms of the given quantitiesw,h,d,u0,k,l, and n and ( and fundamental constants), what is the magnitude of the voltmeter reading? Check your work. (f) What is the resistance of this length of the iron slab?

The circuit shown in Figure 19.61 consists of two flashlight batteries, a large air-gap capacitor, and Nichrome wire. The circuit is allowed to run long enough that the capacitor is fully charged with +Qand-Q on the plates.

Next you push the two plates closer together (but the plates don’t touch each other). Describe what happens, and explain why in terms of the fundamental concepts of charge and field. Include diagrams showing charge and field at several times.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free