Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

According to the Bohr model of the hydrogen atom, what is the magnitude of the translational angular momentum of the electron (relative to the location of the proton) when the atom is in the 2nd excited state above the ground state(N=3)?

Short Answer

Expert verified

The magnitude of the translational angular momentum of the electron is 3.162×10-34J·s.

Step by step solution

01

Definition of angular momentum

The angular momentum is defined as the multiplication of the moment of inertia and the angular velocity of a body.

02

Find the magnitude of the translational angular momentum of the electron.

The possible state of the hydrogen atom whose translation angular momentum is an integer multiple ofh .

Ltrans,C=Nh······1

Hereh Planck’s constant1.054×10-34J·s.

For the second excited state of the atom,N=3

On substituting all numerical values in equation(1), the magnitude of the translational angular momentum of the electron as

Ltrans,C=Nh=31.054×10-34J·s=3.162×10-34J·s

Hence, the magnitude of the translational angular momentum of the electron is 3.162×10-34J·s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An ice skater whirls with her arms and one leg stuck out as shown on the left in Figure 11.93, making one complete turn inThen she quickly moves her arms up above her head and pulls her leg in as shown at the right in Figure 11.93.

(a) Estimate how long it now takes for her to make one complete turn. Explain your calculations, and state clearly what approximations and estimates you make. (b) Estimate the minimum amount of chemical energy she must expended to change her configuration.

Design a decorative “mobile” to consist of a low-mass rod of length 0.49msuspended from a string so that the rod is horizontal, with two balls hanging from the ends of the rod. At the left end of the rod hangs a ball with mass 0.484kg.At the right end of the rod hangs a ball with mass 0.273kg.You need to decide how far from the left end of the rod you should attach the string that will hold up the mobile, so that the mobile hangs motionless with the rod horizontal (“equilibrium”). You also need to determine the tension in the string supporting the mobile. (a) What is the tension in the string that supports the mobile? (b) How far from the left end of the rod should you attach the support string?

Make a sketch showing a situation in which the torque due to a single force about some location is \(20\,\,{\rm{N}} \cdot {\rm{m}}\) in the positive \(z\) direction, whereas about another location the torque is \(10\,\,{\rm{N}} \cdot {\rm{m}}\) in the negative \(z\) direction.

A device consists of eight balls, each of massattached to the ends of low-mass spokes of length L so the radius of rotation of ball is L/2. The device is mounted in the vertical plane, as shown in Figure 11.73. The axle is help up by supports that are not shown, and the wheel is free to rotate on the nearly frictionless axle. A lump of clay with massm falls and sticks to one of the balls at the location shown, when the spoke attached to that ball is 45°to the horizontal. Just before the impact the clay has a speed v, and the wheel is rotating counter clock wise with angular speedω .

(a.) Which of the following statements are true about the device and the clay, for angular momentum relative to the axle of the device? (1) the angular momentum of the device + clay just after the collision is equal to the angular momentum of the device +clay just before the collision. (2) The angular momentum of the falling clay is zero because the clay is moving in a straight line. (3) Just before the collision, the angular momentum of the wheel is 0. (4) The angular momentum of the device is the sum of the angular momenta of all eight balls. (5) The angular momentum of the device is the same before and after the collision. (b) Just before the impact, what is the (vector) angular momentum of the combined system of device plus clay about the center C? (As usual, xis to the right, yis up, and zis out of the screen, toward you) (c) Just after the impact, what is the angular momentum of the combined system of device plus clay about the center C? (d) Just after the impact, what is the (vector) angular velocity of the device? (e) Qualitatively. What happens to the total linear momentum is changed system? Why? (1) some of the linear momentum is changed into energy. (2) some of the linear momentum is changed into angular momentum. (3) There is no change because linear momentum is always conserved. (4) The downward linear momentum decreases because the axle exerts an upwards force. (f) qualitatively, what happens to the total kinetic energy of the combined system? Why? (1) some of the kinetic energy is changed into linear momentum. (2) some of the kinetic energy is changed into angular momentum. (3) The total kinetic energy decreases because there is an increase of internal energy in this inelastic collision. (4) There is no change because kinetic energy is always conserved.

Show thath and angular momentum have the same units.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free